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BLENDED CMA: SMOOTH, ADAPTIVE TRANSFER FROM CMA TO DD-LMS

L. R. Litwin, Jr.*, M. D. Zoltowski"'t, T. J. Endres t , and S. N. Hulyalkart

Purdue University* and Sarnoff Digital Communicationst

ABSTRACT

A common technique in a blind equalization communi
cation system is to use CMA to open the channel eye
and then to switch to decision-directed LMS once the
error rate has dropped to a sufficiently low level. We
propose a new algorithm, Blended CMA, which dynam
ically selects to use either the CMA or DD-LMS update
term when adapting the equalizer taps. The decision
rule governing this selection is also adaptive. Simula
tion results presented in this paper demonstrate how
the algorithm performs when equalizing 64-QAM over
real-world channels and highlights the performance gain
over using traditional transfer methods.

using 64-QAM over real-world channels. The simula
tions demonstrate how B-CMA obtains a significantly
lower error rate at the time of transfer to DD-LMS
compared to using standard CMA. A more complete
discussion of B-CMA can be found in [6].

The rest of this paper is organized as follows. Sec
tion 2 briefly discusses CMA and DD-LMS. Section 3
presents the proposed Blended CMA algorithm. Sec
tion 4 describes the assumptions and settings used for
the simulations. Section 5 presents simulation results.
Section 6 provides concluding remarks.

2. CMA AND DD-LMS

CMA is commonly used as a cold start-up algorithm
in situations where severe lSI causes the channel eye to
be closed and it is not initially possible to use DD-LMS
due to the high number of incorrect decisions. CMA
is a stochastic gradient descent algorithm and its tap
update equation is written as

where sn is the hard decision that is formed by the
receiver's decision device. CMA can be used to up
date the taps until the equalizer has converged to the
point that the transfer to DD-LMS can be made re
liably. Practitioners define the condition for reliable
transfer to DD-LMS in terms of a symbol error rate
(SER) between 10- 1 and 10- 2 [7]. We will approxi
mate this condition as an SER of 0.04. For 64-QAM

where JL is a tunable, positive constant called the step-
size and, is a positive constant known as the Godard
radius. Yn represents the equalizer output at baud in
stance n, f n is the length-M vector of equalizer taps,
and r n is the regressor vector formed from the 1w most
recent equalizer input samples. Complex conjugation
is denoted by the asterisk.

DD-LMS is also a stochastic gradient descent algo
rithm and its tap update equation is written as

1. INTRODUCTION

In this paper we propose a new algorithm named
Blended CMA (B-CMA) which uses adaptable-radius
decision circles to determine whether to update the
equalizer using CMA [1, 2] or DD-LMS [3]. The mo
tivation for this algorithm was to obtain a lower error
rate at the time of transfer to DD-LMS. Examples of
other work in this area can be found in [4] and [5].
The B-CMA algorithm that we propose does not make
an abrupt transfer to DD-LMS, but instead it grad
ually makes the transfer. It does this by deciding to
use DD-LMS only if the current equalizer output falls
within one of the decision circles that are centered at
each constellation point. Based on an easily computed
metric, the radius of the decision circles is increased
gradually as the equalizer output begins to converge
around each constellation point. In order for the algo
rithm to be robust to "poor" choices for the parame
ters that determine when the radius expands, B-CMA
contains logic that adaptively adjusts these parameters
and hence the algorithm "teaches" itself good param
eters to use. Simulation results will be presented that
compare the performance of B-CMA to that of CMA

• Department of Electrical Engineering, Purdue University,
West Lafayette. IN 47906, litwin(mikedz)@ecn.purdue.edu

t Supported in part by the National Science Foundation un
der grant no. l\UPS-9708309.
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and a normalized channel as defined in [7], this SER
corresponds to a mean-squared error (MSE) of approx
imately 0.0182 (see [8] for the underlying mathemat
ics). We will use the term Transfer Level to refer to
this MSE value. Thus, CMA is used until the MSE
falls below the Transfer Level at which point the trans
fer to DD-LMS is made.

3. BLENDED CMA

3.1. Motivation

The development of B-CMA was motivated by the de
sire to increase the reliability of the transfer from CMA
to DD-LMS. A summary in [9] discusses CMA's robust
ness properties to practical situations by describing the
proximity of the CM local minima to the Wiener set
tings. However, the transfer from CMA to DD-LMS
is often unreliable due to the increase in the stochastic
jitter, or Excess MSE (EMSE), that occurs when using
CMA with a non-CM source (i.e., higher order QAM).

A plot (see [6]) of the cubic CMA error term in
(1) for a non-CM source reveals that the CMA error
term is non-zero at the symbol points. Thus, the taps
will continue to adapt even when the equalizer output
lies on a symbol point. The misadjustment factor due
to this adaptation will increase the EMSE. In contrast
to CMA, the DD-LMS error term in (2) assumes zero
values at the symbol points and hence the EMSE is
greatly reduced. B-CMA takes advantage of DD-LMS's
reduced EMSE by adaptively selecting between CMA
and DD-LMS. The choice is derived from thresholding
the DD-LMS error term. Small values of ISn - Yn I cor
respond to circular regions centered at a symbol point.
For these situations the taps are updated with DD
LMS. Larger values of !sn - Yn I correspond to regions
that are far from a symbol point and thus CMA is used.

3.2. The Blended CMA Algorithm

The B-CMA algorithm makes use of adaptable-radius
decision circles to determine whether to use the CMA
or DD-LMS tap update term to adapt the equalizer
taps. The algorithm determines which update term
to use based on where the current equalizer output
lies. Identical decision circles, with adaptable radius
R, are centered around each constellation point and if
the current equalizer output falls within one of these
decision circles, the equalizer updates the taps using
the DD-LMS tap update term. If the symbol falls out
side of these decision circles, then the taps are updated
with the CMA tap update term. The reasoning for
this approach is that symbols that are close to a given
constellation point are assumed to correspond to that

constellation point, and hence the resulting hard de
cision is assumed to be correct and DD-LMS is used.
However, for regions further from constellation points,
it is more likely that the corresponding hard decision
will be incorrect and thus it should not be used for a
decision-directed calculation. Since CMA relies on the
statistics of the signal as opposed to hard decisions,
it can be used to compute the tap update term when
symbols lie farther away from constellation points.

The key to B-CMA's performance is its ability to
adapt the radius of the decision circles. This adap
tation allows B-CMA to use decision-directed updates
more frequently as the channel eye is opened. In addi
tion, if a time-varying channel causes the eye to close,
B-CMA uses CMA as an aquisition aid in order to re
open the eye. Figure 1 shows the decision regions for
a single constellation point, and the figure is useful for
understanding how the adaptation process works. The
dashed circle of radius R is the decision circle and the
value for R is adapted by the algorithm as symbols are
processed. A monotonically increasing sequence of val
ues used for R is stored in the vector R and the values
lie within the range 0 ::; R( i) ::; 1. The index i denotes
the current location in the vector. The dotted circle
of radius Rth = 1 is the threshold circle. The radius
R is initially zero and thus the equalizer is updated
using CMA. The symbol counter k is incremented as
each symbol is processed. No radius adaptation occurs
until at least N symbols have been processed, i.e. un
til k ~ N. At that point, the algorithm computes the
number of the previous N symbols that were within a
distance of Rth = 1 from their corresponding hard de
cisions. This number is assigned to sum. The value of
sum is then compared to a threshold. A set of thresh
olds is stored in the vector T, and each element in the
threshold vector is related to an element in R. Hence,
if the current decision radius is R( i), the current value
of the threshold is T(i). A key feature of B-CMA is
that the values of T are adapted by the algorithm. The
adaptation is important because it allows the algorithm
to adapt to changing channel characteristics and it also
enables B-CMA to be robust to "poor" initial values of
T. The computed value of sum is compared to the
threshold T(i). The decision radius R = R(i) is in-

creased if sum ~ T(i). This increase is accomplished
by incrementing i by one since the values stored in R
are monotonically increasing. If R is already one, then
B-CMA instead transfers to DD-LMS.

The values for T are user-defined, and since the op
timal (in some sense) values vary among channel con
ditions, we desire an adaptive method of choosing the
parameter threshold vector T based on a suitable ini
tialization. For example, if an element in T is set too
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Figure 1: Example of a B-CMA decision region. The
square region represents the standard DD-LMS deci
sion region and the circles represent the decision (R)
and threshold (Rth) circles used by B-CMA.

Figure 2: Flowchart of main loop of B-CMA algorithm.

of the main loop of the algorithm and the parameter
adaptation is shown separately in Figure 3.

low, the decision radius will be increased prematurely
and the algorithm performance may suffer due to the
increased number of incorrect decisions. Fortunately,
B-CMA adapts the threshold vector in response to this
increase in incorrect decisions. If sum was not greater
than the current value of the threshold, T( i) I the al
gorithm then checks to see if sum is less than the pre
vious value of the threshold, T(i - 1). If it is, the
algorithm determines that R is set too high and it de
creases the decision radius by decrementing i by one.
After i is decremented, the algorithm then increases
the threshold T(i) by Tine. A recommended value for
line is about 2-4% of N. Since the decision radius was
assumed to be increased prematurely, the threshold is
increased by line in order to force the algorithm to wait
longer before switching back to that same decision ra
dius. Thus, if the values of T are set too low, B-CMA
will adapt the values until it finds good settings itself.

Alternatively, it is possible that threshold values
can be set too high. In such a case, the value of sum

would not be large enough for adaptation of R to oc
cur. If 5N symbols have been processed without any
adaptation, the algorithm decreases the value of the
current threshold T( i) by 1)eak. A recommended value
for 1)eak is about 1-2% of N. By decreasing the thresh
old slightly, the algorithm is able to handle the situa
tion where the threshold values have been set at a level
that is too high for adaptation to occur.

The mechanics of the B-CMA algorithm are sum
marized in Figures 2 and 3. Figure 2 describes the logic

4. ASSUMPTIONS/SETTINGS

4.1. Assumptions

All data was fractionally sampled with a spacing of T /2
where T is the symbol period. The channel model is
derived from experimentally acquired microwave data
and is available at the SPIB database l . The simula
tion results from channel 10 are shown in this paper,
however, more results are available in [6]. The results
presented are for the case of white Gaussian noise with
an SNR of 40 dB. The received signal variance was set
to unity using the normalization described in [7].

4.2. Settings

The simulation used a 32-tap equalizer and the value
of the LMS step-size was Ji,LM S = 0.0200. The two
values for the CMA step-size were Ji,l = 0.0020 and
Ji,2 = 0.0005. The larger Ji,l was also used by the B
CMA algorithm when updating the taps with CMA.
The taps were initialized with the center tap set to
unity and all others zeroed.

The B-CMA algorithm settings that were used for
the simulation were N = 100, T = [70 75 80 85 90
95 100] and R = [0.0 0.1 0.25 0.35 0.5 0.75 1.0]. The
parameter T(7) = 100 = N represents the threshold
for the equalizer to transfer to DD-LMS. Although it
was included as a recommended setting for actual use,

1The Rice University SPIB channel database resides at
http://spib.rice.edu/spib/microwave.html.
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Figure 3: Flowchart of parameter adaptation loop of
B-CMA algorithm.

B-CMA was not allowed to transfer to DD-LMS for
the simulation results shown in this paper. The trans
fer was prevented in order to compare the behavior of
CMA and B-CMA prior to the transfer to DD-LMS.

J. SIMULATION RESULTS

The MSE trajectories for CMA and B-CMA are shown
in Figure 4. CMA (fJI) was able to get near the Trans
fer Level, however, the EMSE due to the large step-size
prevented it from dropping below the Tranfer Level.
The smaller step-size of CMA (P2) reduced the EMSE
and enabled it to drop below the Transfer Level, how
ever, the smaller step-size also slowed convergence. The
step-size used by B-CMA (in CMA mode) was the same
as CMA (pd. Although CMA performed poorly with
PI, B-CMA was able to tolerate a higher peMA due
to the reduced EMSE of DD-LMS. B-CMA reached
the Transfer Level quickly and its MSE dropped much
lower compared to CMA. Thus, B-CMA was able to
obtain a more reliable transfer point than CMA.

6. CONCLUSIONS

In this paper we presented a novel algorithm for cold
start-up applications named Blended CMA. Simulation
results were shown that demonstrated how B-CMA not
only obtained a significantly lower MSE, but it also
has the added benefit of converging faster than CMA.
Thus, it reached a more reliable transfer point from
which the equalizer could transfer to DD-LMS mode.
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A DECISION-DIRECTED CONSTANT MODULUS ALGORITHM FOR HIGHER-ORDER
SOURCE CONSTELLATIONS
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ABSTRACT

This paper discusses methods for calculating and implementing
the update error term for the popular blind equalization algorithm
known as Godard's algorithm, or the Constant Modulus Algorithm
(CMA), without the use of multipliers so that chip area and signal
latency are both substantially reduced. A decision-directed CMA
update term is derived for higher-order (non-constant modulus)
source alphabets. The modified update error term can be calculated
using a look-up table in place of costly multipliers and adders.
Baseband and passband implementations for one-dimensional and
two-dimensional signaling are discussed.

1, INTRODUCTION

can conceivably be combined with the dithering proposed in [11].
Both one-dimensional Pulse Amplitude Modulation (PAM) and
two-dimensional Quadrature.Amplitude Modulation (QAM) sig
naling are used as examples.

Following this introduction, §2 briefly reviews the Constant
Modulus (CM) criterion and CMA. §3 describes the calculation
of a decision-directed CMA (DD-CMA) error term for real-valued
signal processing. §4 describes a DD-CMA error term for complex
valued signaling. §5 describes quantization using the DD-CMA
error term when the equalizer processes passband samples which
are not strictly at DC. §6 illustrates a numerical simulation, and §7
contains concluding remarks. The material discussed in this paper
is patent pending [2].

GMA error term ebb

Interestingly, CMA is globally convergent to an asymptotic
setting which is equivalent within a phase shift to the Wiener set
ting (minimizing the desirable mean squared error (MSE) cost

where ,.? is a scalar referred to as Godard's (dispersion) constant,
y(k) is the (true baseband) equalizer output at baud instance k,
and E {.} denotes expectation. The Constant Modulus Algorithm
(CMA) performs a stochastic gradient descent of the CM cost func
tion and updates the equalizer parameters according to the rule (see
[6] or [12])

f(k + 1) f(k) + IJ-r*(k) y(k)('? -ly(k)1 2
) (2)

" .,

where r(k) = [r(k) r(k - 1) ... r(k - M + 1) )T is a regressor
vector of input samples to the equalizer tapped delay line, f(k)
is the Iength-M vector of equalizer parameters, and (.) * denotes
conjugation. The term ebb is referred to as the baseband CMA
error term. We will drop the time index k in the sequel where risk
of confusion is low.

When two-dimensional signaling is used (as in QAM) the equal
izer output is complex and can be separated into in-phase (I) and
quadrature (Q) components, y = YI + jYQ. The baseband CMA
error term is decomposed into I and Q components as

(1)

(3)

(4)

YI(k)· (·l- YI(k)2 - YQ(k)2)

ydk) . ci - YI(k)2 - YQ(k)2)

2. CONSTANT MODULUS ALGORITHM PRIMER

The Constant Modulus (CM) cost function [6] is given by

JCM = E{('l-ly(kW)2}

Numerous consumer and government products relying on digital
transmission in the new millenium require adaptive equalizers to
restore corrupted data to acceptable error rates. The data rates used

. by current and next generation hardware are often so high that the
equalizer operates in a data-rich environment so that methods rely
ing on higher-order statistics, which were once thought too slow to
be practical, can now provide robust demodulation with extremely
fast acquisition time.

The Constant Modulus Algorithm (CMA) accumulates a third
order moment of the equalizer output. CMA was originally pro
posed by Godard [6] for QAM signals and developed indepen
dently by Treichler and Agee [12] for constant envelope PM sig
nals. Some recent work focusing on reduced-complexity imple
mentation of the CMA update propose a signed-error CMA (SE
CMA) which replaces the usual CMA error term with its signum
(+/-1) [I], [5]. In [I], this I-bit quantization is shown to signif
icantly distort the Constant Modulus (CM) cost surface by mak
ing it piecewise flat, or tiled. Since the usual CM cost surface is
multi-modal, the SE-CM cost surface can be composed of facets
with zero slope so that equalizer converge can be indefinitely pro
longed. Schniter and Johnson [II] attempt to remedy this poten
tial problem by introducing a tunable dithering term to the CMA
error term before signum operation. Hence, on average, over a
certain region, the SE-CMA trajectory follows the true CMA tra
jectory. The dithering preserves CMA's robustness properties at
the expense of raising the misadjustment, or excess MSE (EMSE).

Our work describes methods for quantizing the CMA error
term so that it can be calculated using a look-up table in place
of costly multipliers and adders, thereby reducing chip area and
signal latency. Our methods are designed to provide better per
formance than the I-bit quantization studied in [I] and [5], and



250',------,---r----,..---,--,----,--r---function) under a set of ideal conditions [3]. Even more remark
ably, CMA exhibits extreme robustness properties to realistic sig
naling environments (summarized in [7]). Observe that the error
calculation in (3) or (4) requires two (three) multiplies and one
(two) add(s) for real (complex) signal processing. In high data rate
scenarios, the computation of this error term and its application to
the length- M regressor vector can induce significant time delay
which exceeds the symbol period. In this case, the current equal
izer parameters are updated with an error term calculated using
previous data, causing a performance degradation. Furthermore,
multipliers can consume valuable chip area. We desire methods
for quantizing the CMA error term which can be implemented us
ing a look-up table so that chip area and signal latency can be re
duced, and at the same time retain CMA's robustness properties
and reduce the EMSE of CMA.

3. REAL-VALUED SIGNALING
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Figure I: CMA (solid) and DD-CMA (dashed) error terms as a
function of the equalizer output, y.

Lucky's innovation [9] for LMS that replaces the equalizer out
put sample with its best estimate is called Decision-Directed LMS
(DD-LMS). This idea can be extended to CMA and a Decision
Directed CMA (DD-CMA) algorithm is easily derived which re
tains CMA's robustness properties. The DD-CMA error term as
sumes a finite number of values and can be easily calculated with
a look-up table. For the remainder of this section, all parameters
are assumed to be real-valued.

Typically CMA is used as an acquisition algorithm, and adap
tation is transferred to a Decision Directed (DD) mode of oper
ation such as DD-LMS or a decision feedback equalizer (DPE)
when error rates fall below a specified threshold. A decision de
vice (sometimes called a "slicer") is therefore necessary hardware
on the chip. A nearest-element decision device takes input x and
selects the source alphabet member x with closest Euclidian dis
tance to x as its output.

We propose to replace the usual equalizer output sample in the
CMA error term with its best estimate from the decision device
and name the algorithm Decision Directed CMA (DD-CMA). The
baseband DD-CMA error term is therefore described by

1000

500

-500

-1000

-15 -'0 o
equalizer ouIpUI

10 15

(5)

where ii is a best estimate of y. Observe that this function assumes
a finite number of values since ii assumes a finite number of values.
Hence, the DD-CMA error term is easily calculated via a look-up
table which is addressed using the current estimate ii. This look-up
table replaces the two multiplies and one add needed to calculate
the true CMA error term.

The solid line in Figure 1 is the true CMA error term in (2), and
the dashed line is the Decision Directed CMA (DD-CMA) in (5)
for 8-PAM signaling with symbol values {±1, ±3, ±5, ±7}. The
DD-CMA error term assumes six unique levels, with three unique
magnitudes. Observe that for large-magnitude equalizer samples
(y > 6), only one quantization level is assumed (ebb = 84). This
coarse quantization in this area may slow initial algorithm conver
gence. Note also that the DD-CMA error term makes no sense for

constant modulus source alphabets, since the error term is always
zero.

3.1. Extension of Decision Device

By tolerating a small chip area increase, the quantization error
variance can be substantially reduced by extending the slice levels

Figure 2: CMA (solid) and DD-CMA (dashed) error terms where
the 8-PAM signal is quantized as a l6-PAM symbol.

of the decision device. For example, suppose the decision device
is extended to slice l6-level as well as 8-level PAM signals. The
8-PAM symbol levels are denoted by {±2, ±6, ±10, ±14}. The
16-level slice points are denoted by {±1, ±3, ±5 ... ± 13, ±15}.
By quantizing the 8-PAM signal from the l6-PAM symbol set, the
quantization error variance is reduced, as suggested in Figure 2,
which shows the DD-CMA error term (dashed) and true CMA er
ror term (solid).

Observe in Figure 2that the DD-CMA error term assumes two
levels (ebb = 273,1155) for larger equalizer output values (y >
12), as opposed to one quantization level when an 8-level slicer is
used (see Figure 1). Extension of the decision device to include
16-level over 8-level slicing can be accomplished with a minimal
increase in combinatorial logic. The quantization error, however,
is substantially improved.
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Figure 3: CMA (solid) and DD-CMA (dashed) where the slicer
has been modified to yield mid-tread quantization.

3.2. Mid-Tread Quantization

Observe that the DD-CMA error term assumes non-zero values at
the cubic root locations (y = {O, ±,}). This effect is in general
termed mid-rise quantization, as compared to one which assumes
zero values at the root locations and is denoted as mid-tread (see
[8]). Another small modification to the decision device can be
used to remove the bias from the slice values. For example, sup
pose the slice levels are chosen as {O, ±2, ±4, ... ± 14} instead
of {±1, ±3, ±5, ... ± 15}. The 8-PAM symbol values are now
equal to every other 16-level slice value. With decision boundaries
chosen midway between slice points, the DD-CMA quantizes the
CMA error term as shown in Figure 3 for 8-PAM signaling.

Mid-tread symbol quantization manifests as one true mid-tread
and two near-mid-tread DD-CMA levels at the cubic roots. For
example, the DD-CMA value is zero at Y = 0, though it is (small
but) non-zero near the roots at ±,. The DD-CMA value is not
exactly zero near the ±, roots since the source is multi-modulus.
The Godard radius can be modified or the quantization value at
the root locations can be manually set to zero to achieve true mid
tread quantization. In either case, since the zero-state is assumed at
the cubic roots, we hypothesize that the excess mean-squared error
(EMSE) (or stochastic jitter) of the DD-CMA update is reduced.
(See [4] for the EMSE associated with the CMA update.)

4. COMPLEX·VALUED SIGNALING

Figure 4: The in-phase component of the baseband CMA error
term for 64-QAM signaling is illustrated as a surface above the
1- Q plane

Let iiI and YQ be the output of the nearest-element decision
device for inputs YI and YQ, respectively. The analogous DD
CMA to the real-signaling case is to replace YI by YI and YQ by
YQ in each of the in-phase and quadrature components of the error
term, or

eib YI . (,2 - Y; - y~) (9)
eS, flQ . (,2 - fly - fI~) (l0)

Observe that the look-up table now requires a double indexing;
YI and YQ must address the look-up table to calculate the baseband
DD-CMA error term.

For 64-QAM signaling with I and Q symbol values chosen
from {±2, ±6, ±1O, ±14}, each component of the CMA error
term is a function of the two variables, YI and YQ. The in-phase
component of the true CMA error term is plotted as a surface above
the I - Q plane in Figure 4.

Similarly, the in-phase component of the DD-CMA error term
calculated according to (9) is plotted as a surface above the I 
Q plane in Figure 5, where the decision device is extended to 16
level slicing (see §3.1). The quantization of the error term over
all I - Q samples is quite good. We have found that extension
of the decision device as done in this example can significantly
improve algorithm performance, especially for lower-order QAM
constellations.

The two-dimensional version of DD-CMA, illustrated with QAM
signaling, is a simple extension of the one-dimensional case de
scribed above in §3. The baseband equalizer output (y), however,
is now complex. Let y be represented by its real and imaginary
parts, y = YI + jYQ. The baseband CMA error term can be writ
ten as

and separated into in-phase and quadrature components

=
YI . (,2 _ Y; _ y~)

YQ . (,2 _ Y; _ y~)

(6)

(7)

(8)

5. PASSBAND IMPLEMENTATION

When the equalizer processes samples that are shifted away from
DC, the equalizer is said to operate in the passband. Such a situ
ation arises due to oscillator-drift in tuning, which can be tracked
with a phase-locked loop. In this case, the baseband error term is
rotated to form the passband error term, or epb = ebbej8k, where
epb is the passband error term. We will describe the calculation of
the passband DD-CMA error term for two-dimensional signaling.

The in-phase and quadrature components of the passband CMA
error term are given by

e~b (cos (hYI - sinflkYQ)' (,2 - yJ - y~) (II)

e~b (cosflkYQ+sinflkyI)·(l-yJ-y~) (12)
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Figure 6: Equalizerouput: (top) DD-CMA, (bottom) full precision
CMA .

7. CONCLUSION

6. SIMULATION EXAMPLE

Figure 6 shows the equalizer output for DD-CMA and full pre
cision CMA using a 16 tap baud-spaced equalizer, and channel
impulse response [0.15,0.93, -0.2, -0.06]. The source alphabet
is 16-PAM and DD-CMA uses a 32 level slicer (see §3.l). Notice
that DD-CMA convergence is slower than full precision CMA.

The in-phase and quadrature components of the passband DD
CMA error term, e~b and e~b' are each a function of three vari
ables, the quantized baseband samples and one of the components
of the quantized I and Q passband samples. Hence, the look-up
table must be addressed by three values to calculate the passband
DD-CMA error term.
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-pb (2 _2 _2 )
YI . I - YI - YQ
-pb (2 _2 _2 )YQ . I - YI - YQ

for rotation angle Ok.

Define the components of the passband equalizer output sam
ple as yrb = cos OkYI - sin fhYQ and y~b = cos OkYQ + sin OkYI

and let their quantized values from the decision device be iirb and
iiZ', respectively. The passband DD-CMA update error term is
found by replacing the baseband and passband samples in the pass
band CMA error term, (II) and 12), with their best estimates from
the decision device,

This paper has presented novel techniques for calculating the up
date term for Godard's algorithm, or the Constant Modulus Algo
rithm (CMA). A look-up-table can be used in place or multipliers
and adders to reduce chip area and signal latency. These methods
work well and have been developed in silicon; see results of the
NXT2000, a VSB/QAM demodulator, in [10].
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THE EFFECTS OF FINITE BIT PRECISION FOR A VLSI IMPLEMENTATION OF THE
CONSTAKT MODULUS ALGORITHM

L. R. Litwin, Jr.*, T. J. Endrest , S. N. Hulyalkart , and M. D. Zoltowski*

Purdue University* and Sarnoff Digital Communicationst

2. THE CONSTANT MODULUS ALGORITHM

CMA is a gradient descent technique that is used to
minimize the cost function described by the Constant
Modulus (CM) criterion. This cost function can be
written as

signs that involve mathematics. Section 4 describes the
assumptions and settings used for the finite precision
simulations of CMA. Section 5 presents the simulation
results. Section 6 provides concluding remarks.

(1)

(2)f n+1 = f n + J1.r~ Ynb -IYnI
2

)
"-----v-'

C M A error term

where'} is a positive constant known as the Godard
radius and Yn represents the equalizer output at baud
instance n.

The CMA tap update equation performs a stochas
tic gradient descent of JCM and it is written as

where J1. is a small, positive constant called the step
size, f n is the length-M vector of equalizer taps at time
n, and r n = [rn rn-l rn -2 ... rn-M+l ]T is the re
gressor vector formed from the M most recent equal
izer input samples. Complex conjugation is denoted by
the asterisk.

The successful use of CMA in practical receiver im
plementations has been a motivation for researching re
duced complexity versions of CMA. A recent advance
in the area of reduced complexity is signed-error CMA
[5] which replaces the usual CMA error term with its
signum (+/-1). An extension of signed-error CMA
is dithered signed-error CMA [6] which introduces a
dithering term to the CMA error term prior to the
signum operation in order to preserve CMA's robust
ness properties.

Development of reduced complexity versions of
CMA is important for high-speed VLSI applications
because reduction in the complexity of the algorithm
leads to hardware designs with higher operating speeds

1. INTRODUCTION

ABSTRACT

One of the most popular blind equalization techniques
is the Constant Modulus Algorithm (CMA), and it has
gained popularity in the literature and in practice be
cause of its LMS-like complexity and its robustness to
non-ideal, but practical, conditions. Although CMA
has been well-studied in the literature, these analyses
have typically implemented the algorithm using "infi
nite" precision arithmetic. The motivation for this pa
per is a VLSI implementation of a high data rate, frac
tionally spaced, linear forward equalizer whose taps are
adjusted using CMA. In this paper we examine how im
plementing CMA using finite bit precisions affects the
algorithm's performance.

The Constant Modulus Algorithm (CMA) was ongl
nally proposed by Godard [1] for QAM signals and
independently by Treichler and Agee [2] for constant
envelope FM signals. CMA has seen recent theoretical
growth (summarized in [3]) and has also been success
fully deployed [4]. Although CMA has been deeply
studied in the literature, virtually all of these analy
ses have been made under the assumption that the al
gorithm would be implemented using "infinite" preci
sion. We will use the term infinite precision throughout
this paper to refer to two cases: 1) when mathematics
are performed under the assumption that each num
ber has infinite precision, and 2) when simulations are
run using numbers represented with the full precision
of the computer. We are interested in the finite pre
cision implementation of C~fA and our motivation is
a VLSI hardware implementation of CMA using fixed
point arithmetic.

Section 2 is a brief primer to CMA and its tap up
date equation. Section 3 discusses the fixed point arith
metic that is typically used for high-speed hardware de-

'Department Of Electrical Engineering, Purdue University,
West Lafayette, IN 47906, litwin(mikedz)'~ecn.purdue.edu

tSarnoff Digital Communications, Suite 100, 6 Penns Trail,
"Jewtown, PA 18940, endres(samirh)'@sdcomm.com



and/or lower gate counts. Hence, since (2) requires a
full complex multiply for each equalizer tap, the im
plementation of (2) to process high data rate signals
is often a computational bottleneck and the allocation
of bit widths to the components of the CMA update
equation is of foremost practical interest. This paper
examines the effects of finite bit precision on the per
formance of CMA by assigning finite bit widths to the
components of (2).

3. FIXED POINT ARITHMETIC

This section describes the fixed point representation of
numbers and it also lists the major effects of using finite
precision arithmetic.

3.1. Representation of Fixed Point Numbers

Although numbers in a VLSI design can be represented
in floating point format (mantissa and exponent), fixed
point arithmetic is the typical format for high speed
designs. In particular, this paper focuses on the effects
of implementing CMA using two's complement fixed
point arithmetic.

In the t\'w's complement fixed point format, a B-bit
number's most significant bit (MSB) represents the sign
of the number, and the lower B-1 bits represent the
magnitude. Thus, a B-bit number can represent num
bers from _(2B - 1 ) to (2 B - 1 -1). In two's complement
arithmetic, the negative of a binary number is formed
by inverting each bit of the number and adding a 1 to
the least significant bit (LSH).

3.2. Effects Of Finite Precision Arithmetic

Finite precision arithmetic can have severe effects on
the algorithm's performance. In particular, there are
three major types of errors that can occur due to finite
precision arithmetic [7].

1. Data And Coefficient Quantization Errors

When representing the data or the filter coeffi
cients with B bits, the total number of possible
values that the data or coefficients can take on is
2B . Hence, the data or the coefficients are quan
tized to one of the 2B levels, which introduces
quantization noise resulting in a decrease in the
effective SNR.

2. Truncation/Rounding Errors

Truncation and rounding errors occur when a
number is converted from a given precision to a
lower precision. For example, when multiplying
the data and the error term in (2), the bit width

of the result increases (multiplying two numbers
of bit widths a and b results in a number of bit
wid th a + b). In order to maintain a reasonable
complexity for the multipliers/adders, this result
is truncated and errors are introduced due to the
reduced precision.

3. Overflow/Underflow Errors

Overflow (underflow) errors occur when the re
sult of a calculation is too large (small) to be
represented with the allocated bit width. When
an arithmetic calculation results in an overflow
(underflow), the result is typically clipped [7] to
the maximum (minimum) value possible for that
number of bits. This clipping operation induces
nonlinear distortion in the signal.

The presence of these effects stresses the importance of
assigning the appropriate number of bits to the compo
nents of each mathematical operation. The simulation
results presented in this paper show how the manifes
tation of the above errors affects the performance of a
finite precision VLSI implementation of CMA.

4. ASSUMPTIONS/PARAMETER SELECTIONS

This section describes the assumptions and parameter
selections that were used for the simulation results pre
sented in section 5.

4.1. Assumptions

All data is fractionally sampled with a spacing of T /2
where T is the symbol period. The channel models are
derived from experimentally acquired microwave data
and they are available at the SPIB database1

. Specifi
cally, channels 1 and 2 are used, and they are 300 and
230 samples long, respectively. The source sequence for
each simulation consists of 150,000 T /2-spaced sam
ples. The 75,000 symbols are taken from an equally
probable 64-QAM alphabet. The mean-squared error
(MSE) value that is shown in all of the figures is com
puted by averaging the instantaneous MSE over the
last 25,000 symbols.

In order to simulate the fixed point arithmetic used
in hardware, the result of each operation is rounded to
an integer value and then clipped to make sure that
the result is within the range of possible values for the
number of assigned bits. The entire computation of the
tap update term is performed with a precision of 32

I The Rice University Signal Processing Infor-
mation Base (SPIB) channel database resides at
http://spib.rice.edu/spib/microwave.html



bits. This high precision is used to isolate the effects of
using reduced precisions for just the data and the taps.

We use Bdata to denote the number of bits used
to represent the data, and B taps to denote the tap bit
precision used when multiplying the data in the com
putation of (2). For the results shown in Figures 1 and
2, the taps are stored at 32-bit (full) precision, but only
the upper B taps bits are used to multiply the data. In
Figure 3, the taps are stored at reduced precision, and
only B taps (where B taps < 32) bits are used for both
the storage of the tap values, and for the computation
of (2).

4.2. Parameter Selections

1. A 16-tap fractionally-spaced equalizer (FSE) is
used for Channell, and a 32-tap FSE is used for
Channel 2.

2. A single spike initialization is used for the taps in
all simulations. This initialization involves set
ting the center tap to unity and all other taps to
zero. For the 16-tap equalizer, the center tap is
tap position 8, and for the 32-tap equalizer, the
center tap is tap position 16.

:3. The value used for the step-size is J1 = 2- 22 . This
value is specifically chosen to be a power of two
because it can be implemented in hardware as
a simple right-shift by 22 bits as opposed to an
actual multiply.

5. SIMULATION RESULTS

The approach taken in performing the simulations was
to first hold the data precision at B data = 20 bits while
varying the tap precision from B taps = 4 bits to 20 bits
and recording the MSE for each setting. Subsequently,
the tap precision was held at 20 bits while the data
precision varied from 4 bits to 20 bits. No noise was
present for either case. The purpose of this approach
was to determine "good" settings to use for further
simulations. The results of these simulations are shown
in Figure I. Note that a tap bit precision of 9 bits
yields an MSE similar to that for a tap bit precison of
20 bits. Also note that a data bit precision of 6 bits
yields an MSE similar to that for a data precision of 20
bits. The effects of quantization appear when using 5
bits for the data, although an aggressive design might
perform adequately using this precision. However, 6
bits is preferable. 5 bits appears to be the lower limit,
as evidenced by the jump of over 10 dB for the MSE
when only 4 bits are used.

Although these simulations were only done for two
channels, from the results we can extrapolate that, in

general, the taps are more sensitive to finite bit preci
sion effects compared to the data (this is an expected
result based on the analysis of finite bit precision effects
on FIR filters in general, for example, see [7]). Due to
this increased sensitivity to finite bit precision, the taps
of the CMA equalizer should be assigned a higher pre
cision than that assigned to the data. In fact, based on
the results shown here and on other simulation results,
we hypothesize that a good rule of thumb for the tap bit
precision is "data bits plus three," i.e. pick an accept
able value for B data and assign B taps = B data + 3 bits
for the taps. Based on this rule of thumb, we suggest
that B data = 6 and B taps = 9 would be good precisions
to use for 64-QAM and this class of channels, and for
a more aggressive design, B data = 5 deserves study.

In order to further test this hypothesis, we selected
the more aggressive case of Bdata = 5 and B taps = 9
and ran simulations with an SNR level of 24 dB and for
no noise. The results are presented in Figure 2. The top
plot fixes B data = 5 and varies the tap precision, while
the bottom plot fixes B taps = 9 and varies the data
precision. Note that for our proposed precisions (and
all precisions above that), the noise has the effect of
"lifting" the curve. However, for the points below our
proposed precisions, the effects of noise do not cause
a significant change in performance. This is because
the quantization effects dominate at these precisions.
From these results, we can state that, for this class of
channels, the values of Bdata = 5 and B taps = 9 are
adequate precisions for 64-QAM, and one might want
to use B data = 6 to be conservative.

For the results presented above, the taps are stored
at a precision of 32 bits, and only the upper B taps are
used to multiply the data. Further simulations were
run to examine the effects of storing the taps at re
duced precisions. The MSE trajectories are shown in
Figure 3. In the case of reduced precision, the stated
value for B taps is the bit precision used for both storing
the taps and used in (2). Note that when the taps are
stored at the same reduced precision used to calculate
(2), about twice the bit width is needed to achieve sim
ilar performance as when the taps are stored at higher
precision. These results emphasize the importance of
storing the taps at a high precision, even though only
a lower precision is needed for the multiplication of the
data.

6. CONCLUSIONS

We have shown how a fixed point VLSI implementa
tion of CMA will suffer a performance loss due to the
effects of finite bit precisions. Based on an admittedly
limited data set, our results suggest that B data = 6
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Blind Equalization Using the Constant
Modulus Criterion: A Review
C. RICHARD JOHNSON, JR., FELLOW, IEEE, PHILIP SCHNITER, THOMAS J. ENDRES, MEMBER,

IEEE, JAMES D. BEHM, DONALD R. BROWN, AND RAUL A. CASAS

Invited Paper

This paper provides a tutorial introduction to the constant
modulus (CM) criterion for blind fractionally spaced equalizer
(FSE) design via a (stochastic) gradient descent algorithm such
as the constant modulus algorithm (CMA). The topical divisions
utilized in this tutorial can be used to help catalog the emerging
literature on the CM criterion and on the behavior of (stochastic)
gradient descent algorithms used to minimize it.

Keywords- Adaptive equalizers, blind deconvolution, blind
equalization, constant modulus algorithm (CMA), digital
communication, equalizers, intersymbol interference, least mean
square methods.

I. INTRODUCfION

Information-bearing signals transmitted between remote
locations often encounter a signal-altering physical channel.

. Examples of common physical channels include coaxial,
fiber optic, or twisted-pair cable in wired communications
and the atmosphere or ocean in wireless communications.
Each of these physical channels may cause signal distortion,
including echoes and frequency-selective filtering of the
transmitted signal. In digital communications,· a critical
manifestation of distortion is intersymbol interference (lSI),
whereby symbols transmitted before and after a given
symbol corrupt the detection of that symbol. All physical
channels (at high enough data rates) tend to exhibit lSI. The
presence of lSI is readily observable in the sampled impulse
response of a channel; an impulse response corresponding
to a lack of lSI contains a single spike of width less than
the time between symbols. An example of a terrestrial mi
crowave channel impulse response [obtained from the Rice
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Fig. 1. Terrestrial microwave channel impulse response magni
tude, liT = 30 x 106 symbolsls (SPIB channel #3).

University Signal Processing Information Base (SPIB)I] is
shown in Fig. l.

Linear channel equalization, an approach commonly used
to counter the effects of linear channel distortion, can
be viewed as the application of a linear filter (i.e., the
equalizer) to the received signal. The equalizer attempts to
extract the transmitted symbol sequence by counteracting
the effects of lSI, thereby improving the probability of
correct symbol detection.

Since it is common for the channel characteristics to be
unknown (e.g., at startup) or to change over time, the pre-

ferred embodiment of the equalizer is a structure adaptive in
nature. Classical equalization techniques employ a time-slot
(recurring periodically for time-varying situations) during
which a training signal, known in advance by the receiver,
is transmitted. The receiver adapts the equalizer (e.g., via
LMS [6], [27]) so that its output closely matches the known

I This microwave channel database resides at http://spib.rice.edu/
spib/microwave.html.
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Fig, 2, (a) Nonconstant modulus source constellation (I6-QAM)
versus (b) eM source constellation (8-PSK).

reference training signal. Since the inclusion of such signals
sacrifices valuable channel capacity, adaptation without
resort to training, i.e., blind adaptation, is preferred. The
most studied and implemented blind adaptation algorithm
of the 1990's is the constant modulus algorithm (CMA).

CMA seeks to minimize a cost defined by the CM
criterion. The CM criterion penalizes deviations in the
modulus (i.e., magnitude) of the equalized signal away from
a fixed value. In certain ideal conditions, minimizing the
CM cost can be shown to result in perfect (zero-forcing)
equalization of the received signal. Remarkably, the CM
criterion can successfully equalize signals characterized by
source alphabets not possessing a constant modulus [e.g.,
16-quadrature amplitude modulation (QAM)], as well as
those possessing a constant modulus (e.g., 8-PSK) (see
Fig. 2). This paper attempts to explore the behavior of CMA
by considering the similarities between the CM and mean
squared error (MSE) criteria. This relationship is important
because of well-known connections between MSE and the
actual quantity we desire to minimize: probability of bit
error (e.g., see the discussion in [5]).

Plotting the CM cost versus the equalizer coefficients
results in a surface referred to as the CM cost surface. Sto
chastic gradient descent (SGD) algorithms [6], [13] attempt
to minimize the CM cost by starting at some location on
the surface and following the trajectory of steepest descent.
The CM cost surface characteristics are important because
they can be used to understand' the behavior of any SGD
algorithms that attempt to minimize the CM cost, such as
CMA. Specifically, these characteristics lend insight into
the channel, equalizer, and source properties which affect
SGD behavior.

The success of a stochastic gradient descent equalizer
adaptation algorithm is dependent on a certain amount of
stationarity in the received process. Thus, throughout the
paper, we restrict our focus to stationary source and noise
processes and to channels whose impulse response is fixed
or siowly2 time varying.

A. History

In the literature, blind equalization algorithms blossomed
in the 1980's. The two principal precursors are Lucky's

2 Here "slow" is considered relative to the tracking speed of the SaD
algorithm.

1928

blind decision-direction algorithm [11] and Sato's algorithm
[19]. What we term the CM criterion was introduced
for blind equalization of QAM signals in [29] and of
pulse-amplitude modulation (PAM) and FM signals in
[30]. By the end of the 1980's blind equalizers were
commercialized for microwave radio [9]. By the mid 1990's
blind equalizers were realized in very large scale integration
(VLSI) for high definition television (HDTV) set-top cable
demodulators [23]. The current explosion of interest in the
CM criterion stems from blind processing applications in
emerging wireless communication technology (e.g., blind
equalization, blind source separation, and blind antenna
steering) and from CMA's record of practical success.

B. Our Mission

This paper is intended to be a resource to both readers
experienced in blind equalization as well as those new to the
subject. In a tutorial style, Section I-C provides background
in fractionally spaced equalizer (FSE) modeling and design.
(For baud-spaced equalizer (BSE) design, we refer the
interested reader to a variety of classical references, e.g.,
[5], [6], [10], and [16].) Section II then illustrates several
low-dimensional examples that help to characterize the
behavior of FSE's adapted under the constant modulus
criterion.

In Section III we construct a categorization of literature
focusing on the application of the CM criterion to blind
equalization. The annotated bibliography in Appendix III
catalogs the existing literature according to the classifica
tions of Section III, providing the reader with a valuable
tool for further research. Our attempt to be exhaustive
is justified only by the relative infancy of the subfield;
evidence of the emerging status of this literature is seen
in the wealth of conference papers in the bibliography of
Appendix III.

Following the introductory FSE tutorial, Section I-E
presents a novel view of classical nonblind adaptive equal
ization that illuminates the connection between the MSE
and CM criteria. Specifically, the LMS-with-training strat
egy requires preselection of a design variable, namely
training sequence delay, that may lead. to a potentially
suboptimal solution. The delay-optimized MSE (a function
of equalizer parameters only) yields a cost surface (see
Fig. 7) for which a simple LMS-like parameter update
algorithm is not known to exist. Remarkably, the CM
criterion offers' a proxy for this surface for which there
exists a (blind) parameter update algorithm, namely, CMA.

C. Fractionally Spaced Linear Equalization

In this section we describe the fractionally spaced equal
ization scenario and present some fundamental results re
garding minimum MSE (i.e., Wiener [6]) equalizers. This
material is primarily intended to provide background and
context. For simplicity, our focus is restricted to a T /2
spaced FSE, where T denotes the baud, or symbol, duration.
All results are extendible to the more general T / N -spaced
case. Examples of seminal work on fractionally spaced

PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998

r



w(t)

t .T/2
Sn ~r;)l .. -0-=~Ihl~ - Yn
~ r(t)~

Fig. 3. Baseband model of single-channel communication system
with T /2-spaced receiver.

Yn

Yn

Fig. 5. Multichannel system model.

3 In practice, we would consider the fractionally spaced channel to be
of "finite length" M if the response magnitude can be said to decay below
some sufficiently small threshold for all time t 2 M (T/2).

It is possible to form the (baud-spaced) impulse response
of the linear system relating Sn to Yn using a pair of
P x N baud-spaced convolution matrices Ce and Co, where
P=M+N-l.

codd
0

cl'dd codd
0

codd
I

Co = codd codd (2)
M-I 0

codd c odd
M-I I

C2n+l forn = 0, 1, 2, . ". In a similar manner, the FSE
coefficients are partitioned as r ven = hn and r dd =
hn+l.

Given a fractionally spaced channel of finite3 length 2M,
we can collect the even. and odd sets of equalizer and
channel coefficients into column vectors

(1)

ceven
o

ceven
I

ceven
M-I

codd
M-I

ceven
M-I

coven

civen coven

ceven
M-I

f e = (Jo, f2, f4, "', hN_2]t

= [teven feven feven ... feven] t
JO , I '2 , 'N-I

fo = [h, 13, f5, "', hN_I]t

= [fodd fodd fodd '" fodd] to , I , 2' 'N-I

Ce = [co, C2, C4, "', C2M_2]t

= [ceven Ceven Ceven ... Ceven ] to , I , 2 , 'M-I

Co = [Cll C3, C5, ... , C2M_d
t

= [codd Codd Codd ... Codd ] to , 1 , 2' 'M-I .

Fig. 4. Multirate system model.

equalization include [4], [12], [14], and [26], while more
comprehensive references are [5] and [18].

1) Multirate and Multichannel System Models: Consider
the single-channel model illustrated in Fig. 3. A (possibly
complex-valued) T -spaced symbol sequence {Sn} is
transmitted through a pulse shaping filter, modulated onto
a propagation channel, and demodulated. We assume all
processing between the transmitter and receiver is linear
and time invariant (LTI) and can thus be described by the
continuous-time impulse response c( t). The received signal
r(t) is also corrupted by additive channel noise, whose
baseband equivalent we denote by w(t). The received
signal is then sampled at T 12-spaced intervals and filtered
by a T12-spaced finite impulse response (FIR) equalizer
of length 2N. (An even length is chosen for notational
simplicity.) This filtering can be regarded as a convolution
of the sampled received sequence with the equalizer
coefficients ik. Finally, the FSE output {xd is decimated
by a factor of two to create the T -spaced output sequence
{Yn}. Decimation is accomplished by disregarding alternate
samples, thus producing the baud-spaced "soft decisions"
Yn. We note that, in general, all quantities are complex
valued. For clarity, we reserve the index n for baud-spaced
quantities and the index k for fractionally spaced quantities
throughout the paper.

Appendix I derives the equivalence between the
continuous-time model in Fig. 3 and the discrete time
models in Figs. 4 and 5, both constructed using T j2-spaced
samples of c(t) and w(t). Fig. 4 depicts the multirate model
while Fig. 5 depicts the multichannel model. Though our
derivation of the discrete-time models is based on the
single-channel system in Fig. 3, the equivalence between
the multirate and multichannel models suggests that we
could have based our model on a two-sensor (T-sampled)
communication system instead. For a concise discussion

on the equivalence between temporal and spatial diversity,
see [15].

The multirate model of Fig. 4 uses the discrete-time
fractionally spaced channel coefficients Ck = c(k(TI2))
and the discrete-time random process wk = W ( k(T12)) .
The multichannel model of Fig. 5 subdivides these sample
sequences into even and odd baud-spaced counterparts (of
relative delay T 12), so that c~ven = C2n and c~dd =
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we can rewrite the noise-free multichannel convolution
equation (39) compactly in terms of the P (baud
spaced) system impulse response coefficients h
tho, h 1 • "', hp~dt

Convolution matrices are constructed so that, for example,
the vector Cofe is composed of coefficients from the
convolution c~dd * 1,~ven.

Defining the compound matrix and vector quantities

rThe convention we adopt in constructing C and C, which
is sometimes referred to as "odd-sampled" decimation,
connects the odd subchannel output to the even subequalizer
input and vice versa (see Fig. 5). Appendix I discusses the
implications of this choice.

In the baud-spaced equalization context [10], [16], the
convolution matrix CBS relating the equalizer coefficient
vector to the baud-spaced impulse response does not have
the compound form of (3) or (6). Instead it appears like
C e (or Co) in (2), but with columns constructed from the
T-spaced samples of the channel response. In the absence
of channel noise, this construction of CBS yields the BSE
design equation(4)

(3)

h= Cf.

2N ~ M + (N - 1) :=} N ~ M - 1. (9)

Applying the same argument to (7) reveals the reason that
no FIR BSE can perfectly equalize a nontrivial FIR channel:
the row dimension of CBS always exceeds the column
dimension. The T /2-spaced full rank requirement also
implies that the polynomials specified by the coefficients
Ce and Co share no common roots (i.e., the polynomials
are coprime). Appendix I-C discusses this common-root
condition in more detail.

where fBS is the baud-spaced equalizer coefficient vector.
2) Requirements for Perfect Source Recovery: Equation

(4) leads to what are commonly referred to as the
"length and zero" conditions for perfect fractionally
spaced equalization. We use the term perfect equalization
interchangeably with perfect source recovery (PSR), i.e.,
Yn = Sn-6 for some fixed delay 8 and any source sequence
{ Sn }. In addition to the absence of noise, PSR requires the
"zero-forcing" system impulse response

where the nonzero coefficient is in the 8th position (and 8
must satisfy 0 :::; 6 :::; P - 1). This response characterizes a .
system which merely delays the transmitted symbols by 8
baud intervals. In order to achieve this particular response,
the system of linear equations described by h 6 = Cf must
have a solution. For PSR under arbitrary 6,5 C must be full
row rank [22]. This condition is sometimes referred to as
strong perfect equalization.

The full-rank requirement implies that C must have at
least as many columns as rows, which, in the T /2-spaced
case, results in the following equalizer length requirement:

(7)

(8)

h = CBsfBS

h6 = [0 ... 0, 1, 0 ... O]t

Co

C1 Co

C2 C1

C FS = C2 Co (5)
C2M-1 C1

C2M-1 C2

Cl Co

C3 C2 C1 Co

C3 C2

C= C2lIJ -1 C2AJ -2 Co

C2M-1 C2!v[ -2 C2

Equation (4) indicates that C maps the FSE coefficient
vector to its corresponding system response. Note that C
is a Sylvester matrix [8].

A different (though essentially equivalent) construction of
C and f deserves mention. First consider the fractionally
spaced convolution matrix CFS constructed as in either
C e or Co in (2), but from a vector of fractionally spaced
channel coefficients CFS = [co, Cl, C2, "', C2M_1]t

The product of C FS with FSE coefficient vector f
[10, iI, 12, "', 121"_1]t yields the fractionally spaced im
pulse response between the upsampler and downsampler in
Fig. 4, i.e., h FS = CFsf [See (47) in Appendix I-B.] Since
the baud-spaced impulse response h is formed using the odd
coefficients of h FS , we reason that h can be constructed
from the product of f and a row-decimated version of C FS .

In other words, h = Cf where C is formed from the odd4

rows of C FS

CUJ-1

C2M-2
(6)

Notice that C is a column reordering of C and f is a row
reordering of f. Thus, we consider the alternate formulation
of the "decimated fractionally spaced convolution matrix"
C in (6) as essentially equivalent to C in (3).

4Throughout, we assume a vector/matrix indexing that starts with zero
rather than one, so that the first row is considered "even" and the second
"odd."

D. Mean-Square Error Criterion

In the presence of noise, we desire to mInimiZe the
expected squared magnitude of the recovery error

en = Yn - Sn-6 (10)

5 A necessary and sufficient condition on perfect equalization (in the
absence of noise) is that there exist a b for which h 6 lies in the column
space of C. Hence, there exist channels that do not result in full TOw-rank
convolution matrices but that do satisfy hI> = Cf for particular b. Though
we acknowledge the existence of such channels, we consider them to be
trivial in the physical sense.
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for a particular choice of delay (0). We will see that this
criterion can be interpreted as the best compromise between
lSI and noise amplification in a minimum mean-squared
error (MMSE) sense.

To formulate this error criterion more precisely, we
collect the P previous T -spaced elements of the source
sequence into the vector

sen) = [Sn, Sn-l, Sn-2, ... , Sn-(P-l)] t (11)

10· ,..,..--..,..-----,-----,.----;:=o-'----r--------,

yielding an expression for the recovery error

and the last 2N fractionally sampled values of noise into
vector wen)

Under the assumption that the noise and source processes
are i.i.d. and jointly uncorrelated, with respective variances
(T~ and a,;, the expected value of the magnitude-squared
recovery error becomes

10-"

Fig. 6. f-optimal MSE. hfSdft , 0), versus T-spaced delay 0
for the channel of Fig. I and ~O dB SNR using 300-tap FSE.

10...
0
'---SO-'-----'100'----1..L..

SO
---

200
-'----25Q-'--------l300

delta

corresponds to the index of the minimum diagonal element
of I - CA-lCH [7]. This is written formally as

ot=argmin{[I-C(CHC+,\I)-lCH] }. (21)
h h, h

For a T /2-spaced FSE with 300 taps and an SNR (= 1/A)
of 30 dB, Fig. 6 plots JMSE(ft , 0) versus 0 for the "typical"
impulse response of Fig. 1. Note the degree to which 0 can
affect MSE performance.

We conclude that proper preselection of 0 is important
for equalizer-based minimization of JMSE(f, 0). This idea
of fixed-o optimization is of particular relevance because it
describes the typical adaptive equalization scenario when a
training signal is available [17].

E. An Amalgamated MSE Cost Function

When the source is differentially encoded [5], knowledge
of absolute phase is not required for symbol detection. For
example, either Yn = Sn-h or Yn = -Sn-h (for all n)
would form an acceptable output sequence for differentially
encoded binary phase-shift keying (BPSK). (Forcomplex
valued source alphabets such as QAM, we allow Yn =
ej (-rr/2)m Sn _6 for fixed m E {O, 1, 2, 3}.) Therefore, an
acceptable system impulse response can include a fixed
phase shift in addition to a bulk system delay 8. With
this in mind, we construct a phase- and delay-optimized
amalgamated cost function J A (f)

JA(f) = min {(Cf - phh)H (Cf - phh) + '\fHf} (22)
h,p

(13)

E{lenn = (Cf - hh)H (Cf - hh)a; + fH fa~. (15)

(Appendix I-D discusses the independence assumption re
garding fractionally sampled channel noise.) Note that (15)
is proportional to the source-power-normalized MSE cost
function

wen) = [Wn-l' Wn-3, Wn-5, "', Wn-(2N-l)'

Wn , Wn-2, Wn-4, "', Wn_(2N_2)]t (12)

where the collection of even noise samples follows the
collection of odd noise samples to be consistent with
our definitions of C and f in (3). [Note, however, that
this particular ordering of samples in the noise vector is
inconsequential when assuming an independent identically
distributed (i.i.d.) noise process.] With these quantities, the
nth equalizer output Yn = y(nT+ (T/2)) can be written
compactly as

J MSE = (Cf - hh)H (Cf - hh) + AfHf (16)

where ,\ = a~/a;. In terms of A = CHC + AI, the
technique of "completing the square" yields

H
JMSE = (f - A-1CHhh) A(f - A -lCHhh)

- h,rCA-1CHhh + h,rhh. (17)

Note that A is positive definite for ,\ > O.
Equation (17) indicates that the equalizer parameter vec

tor minimizing J MSE is

and it follows that the f -optimal MSE

min JMSE(f, 0) = JMSE(ft, 0) (19)
f

= h,r (I - CA-lCH)hh (20)

remains a function of system delay o. We make this
property explicit by adopting the notation JMsE(f, 0). It
follows from (8) and (20) that the optimum delay ot

where p is one of the set of allowable phase shifts (e.g.,
{+I, -I} for real-valued PAM).

J A is a multimodal fabrication, bearing similarity to a
(2N + I)-dimensional egg carton. A surface plot appears
in Fig. 7 for well-behaved T /2-spaced channel Cl defined
in Table 1. By "well-behaved" we mean that Cl has
no common or nearly common subchannel roots. Fig. 7
indicates that if we minimize JA (f) by a gradient descent
strategy, then the initial value of f will determine the values
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Fig. 7. .f... for well-behaved channel Cj and no noise in equalizer
(f) space.

Fig. 8. 1CM for well-behaved channel Cj and no noise in equal
izer (f) space.

expected behavior of that algorithm. With this in mind, we
embark on a tutorial study of the cost surface defined by
the CM criterion and descended by CMA. First, however,
consider the following list of features characterizing a
generic (stochastic) gradient descent algorithm.

Far from a stationary point, the gradient (i.e., first
derivative) of the cost surface determines local con
vergence rate.
Near a stationary point, the local curvature (i.e;,
second derivative) of the cost surface determines
local convergence rate.
Local minima with nonzero cost induce excess
steady-state error in stochastic gradient descent
algorithms with nonvanishing step-sizes.
Multimodal surfaces may exhibit local minima of
varying cost, thus linking initialization to achievable
asymptotic performance.
"Poor" initialization on a multimodal surface can
lead a trajectory into temporary capture by (one
or more) saddle points, resulting in arbitrarily slow
convergence to a minimum.
Nontrivial deformations of a multimodal surface re
locate each saddle point and alter the region of
attraction associated with each local minima.

The following sections combine low-dimensional examples
with the well-known characteristics above to formulate
an intuitive understanding of the CM criterion and its
connection to the MSE criterion.

A. Two-Tap Equalizer Design Equations

As discussed in Section I-C, satisfaction of the "length
and zero" conditions ensures an exact solution to the zero
forcing equation h 6 = Cf. For a two-tap T /2-spaced FSE,
the length condition is satisfied for channels with impulse
responses [co, Cl, C2, C3] and shorter. For a length-four
channel, the root condition is satisfied when the even and
odd subchannel polynomials Ceven (z-l) = Co + C2Z-1 and
Codd(Z-I) = Cl + C3Z-1 have distinct roots.

Cj [-0.0901, 0.6853, 0.7170, -0.0901] well-behaved7

C2 [1.0, -0.5, 0.2, 0.3J well-behaved

C3 [-0.0086, 0.0101, 0.9999, -0.0086] nearly-common subchannel roots

c. [1.0, -0.5, 0.2, 0.3, -0.2, -0.15] undermodelled

Table 1 Summary of Channels Used for Two-Tap FSE Examples

~ T /2-spaced Impulse Response I Classification

of 15 and p to which the descent scheme will asymptotically
converge. In other words, optimization of / ... (f) by gradient
descent accomplishes preselection of 15 via choice of f
initialization.

Section II attests to the claim that the eM criterion
serves as a close proxy to J A , which is robust under typical
operating conditions. For a preview, compare the CM cost
surface in Fig. 8 to the amalgamated MSE surface in Fig. 7
for the same channel Cl. As such, the CM criterion offers a
performance metric that bears many similarities to MSE but
which is capable of minimization by (stochastic) gradient
descent schemes conducted blindly with respect to the
.transmitted symbols.

With our tutorial orientatio~, Section II restricts focus
to a two-tap FSE design task that permits visualization
of equalizer-parameter-space cost-contour plots illustrating
various properties of the CM cost function JCM ' In par
ticular, we can isolate an "ideal zero-cost" situation where
the stationary points in JCM and J A match exactly and

where the minima achieve zero cost. This special case
requires several assumptions not often satisfied in practice.
We will examine examples of CM-adapted FSE behavior
conducted under violations of these requirements for ideal
zero-cost equalization. This implicit taxonomy will be used
in Section III to provide an overview of the literature
citations in the annotated bibliography of Appendix III.

II. Two-TAP ILLUSTRATIVE EXAMPLES

The shape of the cost surface defining a particular sto
chastic gradient algorithm often lends great insight into the
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In this case, (3) specifies that the FSE design quantities
take the following form:

Fig. 9. .]CM contours (solid)"fOT well-behaved channel C2 and no
noise, with .]A oveTlay (dashed) and global MSE minima I1llITlced
by U*" in equalizer (f) space.

-3

~L__~3--_~2--_1~-""O---'~-::----=-3----I

'.

MSE ellipse """"

choices of system polarity.6 Thus, the asterisks mark the
MMSE equalizers of optimum system delay. The "MSE
ellipse axes" appearing in the upper left comer of each
contour plot indicate the orientation and eccentricity of the
elliptical MSE contours (see Fig. 9).

All quantities in the experiments are real-valued. Unless
otherwise noted, the source used was zero-mean and i.i.d.
with alphabet {-I, ,I}.

1) Jdeal Zero-Cost Equalization: For a well-behaved7

channel CI in the absence of channel noise, Fig. 8 plots
JCM in equalizer space. Recall that Fig. 7 plots JA

for the same noiseless channel. For a different well
behaved and noiseless channel C2, Fig. 9 superimposes
the corresponding JCM and JA cost contours. Note the
symmetry (with respect to the origin) exhibited by both
JCM and JA cost surfaces.

In these ideal situations, all MSE and CM minima attain
costs of zero (see Figs. 7 and 8). In addition, it can be Seen
that the locations of the JCM and JA minima coincide.
(The J CM minima locations can be inferred from the JCM

cost contours.) Fig. 9 also indicates that the curvatures of
CM and MSE cost surfaces in the neighborhoods of local
minima are closely related.

2) Combined Channel-Equalizer Space: The behavior of
a gradient descent of JCM is sometimes studied in the
(downsampled) combined channel-equalizer space (i.e., h
from Section I-C). The appeal of studying JCM in h-space
follows from the normalization and alignment of JCM

with the coordinate axes. These features are clear in a
comparison of Figs. 9 and 10, both constructed from the
same noiseless channel. Equation (4) implies that a unique
reversible mapping (i.e., an isomorphism) exists between

6We note that in the complex-valued eM criterion. each pair of minima
would be replaced by a continuum of minima spanning the full range
(Q-2rr) of allowable system phase.

7Well-behaved indicates the absence of common or nearly common
subchannel roots.

(23)

B. Introduction to the CM Cost Function

The CM cost function can be motivated using the tem
porary assumption that the source is binary valued (±1).
In this case, Sn has a constant squared-modulus of one
(lsnl2 = 1). Under perfect symbol recovery we know that
the output Yn has the same CM property and can thus
imagine a cost that penalizes deviations from this output
condition. This, in fact, defines the CM cost function for
a BPSK source

Appendix II presents more general versions of the CM
cost function and derives expressions for JCM in terms of
channel parameters, particular source and noise statistics,
and equalizer coefficients.

The leap of faith, first espoused by [29], is the appli
cation of JCM to a multilevel (i.e., nonconstant modulus)
source. Reference [29], which addressed baud-spaced blind
equalization via minimization of JCM ' makes the first
observation concerning the proximity of the JCM and JA

minima.
It should also be noted that the equalizer coefficients
minimizing the dispersion functions closely approxi
mate those which minimize the mean squared error.

This is remarkable because an approximation of JCM

can be formed solely from the equalizer output Yn; no
training signal is required to compose an accurate gradient
approximation for use in a stochastic gradient minimization
algorithm such as CMA [30]. It is worth noting that the
phase-independent nature of JC }"l has its own advantages
in modem design [24].

C. Illustrative Cost Suiface Examples

The following sections present mesh and contour plots
of the CM cost surface for a two-tap T /2-spaced FSE
under various operating conditions. Refer to Table 1 for
definitions of the various channels used in our experiments.
In all contour plots, the asterisks (*) indicate the locations
of global MSE (i.e., h) minima while the crosses (x)
indicate the locations of local MSE minima. Recall that
different pairs of MSE minima (reflected through the origin)
correspond to different values of system delay, while the
two elements composing each pair correspond to the two

Since h 6 has one nonzero coefficient, the zero-forcing
equalizer will be proportional to either the first or the second
column of C- I

. Thus, all four channel parameters enter into
the design of f; the sub-equalizers of Fig. 5 are not simply
inverses of their respective subchannels.
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Fig. 10. ]CM contours for well-behaved channel C2 and no noise
in combined channel-equalizer (h) space.

Fig. 12. ..JCM contours for nearly common subchannel-roots
channel C3 and no noise. Note axis scaling.

-2

-~3~----2:----.....' ---:-0--~--~----.J3
fo

Fig. 11. ..JCM contours for well-behaved channel C2 and 20 dB
SNR.

Fig. 13. ]CM contours for nearly common subchannel-roots
channel C3 and 20 dB SNR. Note axis scaling.

points on the JCM surfaces in li- and f-spaces when C is
invertible, as it is here in our two-tap example.

3) Additive White Channel Noise: As channel noise is in
troduced, Fig. 11 indicates that the MSE and CM minima
both move toward the origin in f-space. Th~ JAand JCM

minima move by different amounts, though, destroying the
equivalence that existed between them in the ideal case of
Fig. 9. However, the relative proximity of JA and JCM

minima evident in Fig. 11 still prompts consideration of
JCM as a close proxy for the amalgamated MSE cost J A

even when in the presence of channel noise.
4) Common Subchannei Roots: As evidenced by the ex

pression we derived for MSE minima

when C H C has a large condition number, modest values of

A can have significant consequences on ft (and thus on the
JA cost surface). If the two subchannels (co + C2Z-1 and
Cl + C3Z-1) have a nearly common root (C3/Cl :::::: cdCo)
then (23) indicates that the column space of C collapses;
thus we expect that one eigenvalue of C H C will be near
zero [20]. Figs. 12 and 13 use channel C3 to demonstrate
the cost surface sensitivity to noise in the presence of nearly
common subchannel roots. Even under such severe surface
deformation, we note that the global JCM minima remain in
the vicinity of global JA minima. This further demonstrates
the robustness of the relationship between JCM and J A .

5) Channel Undermodeling: In general, under violation
of the length condition discussed in Section I-C, no equal
izer settings are capable of achieving zero MSE or CM
cost. This can be confirmed by extending the length of
impulse response C2 by two samples, thus forming the
"undermodeled" channel C4. (Note that the two extra coef-
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ficients forming C4 are no larger than any of the coefficients
in C2.) Fig. 14 shows the CM cost surface for this under
modeled channel. Large differences in the heights of local
minima demonstrate that the CM cost surface can indeed
be significantly multimodal.

Elongating the channel impulse response adds another
possibility for the system delay 15 and thus increases the
number of hI. minima (see Fig. IS). Note, however, that
the number of CM minima have not changed. More impor
tantly, note that the global CM minima remain close to their
MSE counterparts under violations of the length condition.

6) Non-eM Source: The eM source property leading to
the ideal zero-cost situation in Figs. 8-10 is violated in
constructing the cost surface in Fig. 16. Here, the source
is real-valued 32-PAM, which is far from CM. The non
CM property increases the source kurtosis '"'s [defined in
(50)] and increases the minimum eM cost relative to that
of a CM source. Notice also that the CM cost surface has
become "flattened" in the parameter plane. However, as the

Fig. 16. Effectofsourceshaping(I.: s = 1.8) on JCM for channel
c 1 in equalizer space with nq noise.

CM surface deforms due to a non-CM source, the minima
locations remain unchanged.

D. Summary

Our investigations of low-dimensional examples under
the following "ideal, zero-cost" conditions:

no channel noise (i.e., A = 0);
no common subchannel roots (i.e., avoidance of
edeo = e3/ed;
sufficient equalizer length (i.e., N ~ M - 1 for
T /2-spaced FSE's);
i.i.d., zero-mean, constant-modulus source (circularly
symmetric when complex)

showed that, under such conditions, the JA and JCM

minima coincide and achieve zero respective cost. Our
other examples suggest that modest deviations from the
ideal conditions can be tolerated in the following sense:
under suitable choice of initialization, a stochastic-gradient
minimization of JCM will approximate the performance
achieved by the same minimization of JA. We did find,
however, that the deformations caused by various viola
tions of the ideal zero-cost conditions are different. In
fact, substantial effort has been expended to characterize
the performance robustness properties of the CM crite
rion (as descended by popular gradient descent strategies).
Section III catalogs much of this effort.

The previous examples can be used to illustrate and
interpret the following observations.

Channel noise: CMA-based blind equalization is typ
ically successful in common noise environments (Le.,

0'; > O'~ > 0). Under modest noise levels, relocation
of global minima toward the origin is typically more
severe than changes in surface curvature around such
minima.
Undermodeling of channel length: Given hardware
constraints on equalizer length, residual lSI is un
avoidable in practice. Mild contributions from un-

b
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compensated portions of channel response typically
result in mild surface deformation.
Nearly common subchannel roots: These seem quite
likely as channel length increases (see Fig. 18).
Nearly common subchannel roots increase sensitivity
to other violations from ideal conditions, but only
for sub-optimal CM solutions; global CM minima
still exhibit robust performance.
Source kurtosis: Nonuniform (i.e., shaped) symbol
distributions often lead to increased source kurtosis.
As source kurtosis approaches Gaussian,8 the surface
lifts and flattens. Lifting increases the excess error of
stochastic adaptation (e.g., CMA), while flattening
reduces its convergence rate. If the source exhibits
a Gaussian kurtosis, the minima and saddle points
vanish along a rim of the CM surface so that the
gradient has solely a radial component. In this case,
convergence to desirable settings is practically im
possible.
Source correlation: This may occur, e.g., as a result
of differential encoding. Small amounts result in
slight cost surface deformation. Large amounts cause
major problems, suc" as additional local minima with
terrible performance.
Non-CM source: This property is unavoidable in
communication systems using multilevel constella
tions. Though non-CM sources do not alter the min
ima locations, they raise and flatten the CM surface
(as a consequence of increased source kurtosis-see
above).
Initialization: The CM surface is unavoidably mul
timodal. Choice of initialization affects both time
to-convergence and steady-state performance. One
approach referred to in the literature suggests ini
tializing the equalizer with a single spike9 time
aligned with the channel response's center of mass.
In this way, crude knowledge of the channel impulse
response envelope can be used to aid initialization.
Channel time-variation: We proceed under the global
assumption that the channel varies slowly enough
in time to be tracked by the CM-minimizing gra
dient descent algorithm. .In the vicinity of a local
minimum, the tracking capabilities of any gradient
descent scheme can be related to the local curvature.
Equalizer tap spacing: Fractionally spaced equalizers
have the ability to perfectly cancel lSI caused by a
finite-length channel impulse response. In contrast, a
baud-spaced equalizer requires an infinite number of
taps for the same capability. Though we admit that
this noiseless FIR channel model is rather academic,

practical experience offers much evidence for the
superiority of fractionally spaced equalization [5].
Transient versus steady-state performance: Dynamic
system design is often a tradeoff between transient
and steady-state performance. Convergence rate is

8Table 2 presents the values of normalized kurtosis for various sources.

9The single-spike initialization has its origins in baud-spaced equaliza
tion. Fractionally spaced counterparts are discussed in Section III-B3.
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a transient behavior descriptor; slow convergence is
undesired. Excess error (due to a nonvanishing step
size and a nonzero local minimum) is a steady-state
feature; abundance of excess error is undesired.

III. CM-MINIMIZING EQUALIZATION

LITERATURE CATEGORIZATION

Section II presented a tutorial view of the linear equalizer
design task and related the minimization of the delay
optimized and phase-indifferent mean-squared recovery er
ror (JA) to minimization of the CM criterion Ucr-d.
Appendix III presents a bibliography of the literature deal
ing with the CM criterion and its optimization via steepest
gradient descent (such as with CMA). The purpose of this
section is to describe our classification scheme in terms of
the problem formulation and the examples of the preceding
section. We also take this opportunity to cite certain papers
as recommended reading on particular topics.

In addition to the birth of the CM criterion in the early
1980's, highlights in its analytical history include:

the establishment of "perfect" conditions under
which a gradient descent of the CM cost surface
results in asymptotically perfect symbol recovery,
i.e., "global convergence";
confirmation that, under slightly imperfect condi
tions, the CM minima remain in the vicinity of the
MSE minima for various choices of delay and sign;
recognition that, due to performance differences be~

tween CM minima under less-than-perfect condi
tions, initialization may be critical to acceptable
transient and steady-state behavior.

The "perfect" global-convergence conditions referred to
in these statements differ in detail between the baud
and fractionally spaced cases. As discussed in Section 1
C, achievement of perfect source recovery devolves into
exact solution of a set of simultaneous linear equations
when channel noise is absent. Solution of these equations
ensures that the transfer function characterizing the baud
spaced system (relating source symbols to equalized soft
decisions) achieves that of a pure delay. One requirement
on the existence of this perfectly equalizing solution is
that the equalizer must have enough degrees of freedom.
For a baud-spaced equalizer and an FIR channel, this
latter requirement necessitates an equalizer with infinite
impulse response (IIR) [31]. For T j 2-spaced FSE's, on
the other hand, an equalizer response length matching
(or exceeding) that of the channel proves sufficient [21].
The other requirement for the existence of a perfectly
equalizing solution is that the system of equations be

well posed. We mean, in an algebraic sense, that the
matrix characterizing the linear system of equations must be
nonsingular. For baud-spaced equalizers, this nonsingularity
condition prohibits nulls in the channel frequency response
(which implies, for example, that no FIR channel zeros
are tolerated on the unit circle). We henceforth refer to
satisfaction of this baud-spaced condition as "invertibility."
For T j2-spaced FSE's, this nonsingularity translates into a
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lack of common subchannel roots (see Appendix I-C) and
is commonly referred to as "subchannel disparity."

If conditions on the source (e.g., zero-mean, circularly
symmetric, white, and sub-Gaussian) are added onto the
perfect equalization requirements described in the last para
graph, a gradient descent of the CM criterion will provide
asymptotically perfect source recovery from any baud- or
fractionally spaced equalizer initialization. In this case the
multiple CM minima all have the same depth, i.e., that
of an egg carton. The distinctions in global convergence
conditions between the baud- and fractionally spaced cases
prompt our separation of these two cases. We note that,
while analyses of CM-minimizing baud-spaced equaliz
ers have been published since their introduction in 1980,
very few analyses of CM-minimizing fractionally spaced
equalizers were published before 1990.

The stringency of the global convergence requirements
has prompted theoreticians to examine the impact of their
violation. For example, what if the FSE length is less than
the total channel response but greater than the "signifi
cant" portion of the channel response? How are prominent
features of the CM cost surface (e.g., stationary point
locations, regions of attraction, and heights of local minima)
altered as the source is shaped or correlated and/or channel
noise power increases and/or channel disparity is lost?
While engineering practice desires answers about simulta
neous dissatisfaction of all global convergence conditions,
theoretical analysis is more likely to move forward by
studying individual (or possibly pairwise) violation of these
conditions. Therefore, we are encouraged to adopt a set
of literature categorizations concerning studies of robust
ness to violations in each of the four global-convergence
conditions (i.e., absence of channel noise, sufficient length,
adequate disparity, and use of a zero-mean, white, circular,
sub-Gaussian source process).

In Section II-C we noted that the CM and MSE error
surfaces are quite similar in the vicinity of the CM local
minima. This relationship implies that the local behaviors
of their stochastic gradient descent minimizers (e.g., CMA
and LMS, respectively) should be closely related. As a
result, we are encouraged to use key behavioral descriptors
associated with classical trained-LMS equalization theory
as further categories for our literature classification. In
particular, we borrow excess MSE (i.e., misadjustmentlO

)

and convergence rate.
While the CM and MSE criterion are comparable in

a local context, their global characteristics are strikingly
different. Recall the multimodality of the CM cost sur
face (e.g., see Figs. 8 and 14). As noted earlier, a good
gradient-descent initialization may be necessary to ensure
convergence to a "good" local minimum as well as to

avoid temporary local capture by saddle points. In contrast,
consider the trained-LMS cost surface: a unimodal elliptical
hyper-paraboloid. Its unimodality obviates the need for a
clever initialization strategy (assuming the training delay
has been chosen). In fact, the LMS equalizer is often

10 Misadjustment is defined as the ratio of excess MSE to minimum
MSE.

initialized by zeroing the parameters. II If we consider
delay-selection as part of the initialization of trained LMS,
however, we find many similarities with the equalizer
parameter initialization of CMA. Specifically, the choice of
training delay bounds asymptotic LMS performance, and,
in conjunction with the equalizer initialization, LMS time
to-convergence. Conversely, CMA equalizer initialization
determines (asymptotic) system delay. With these thoughts
in mind, we add surface topology and initialization strat
egy as literature categories under the heading of gradient
descent behavior.

In summary, the classification scheme we adopt for our
literature review uses a total of 11 labels within the three
main categories discussed above.

1) Equalizer tap spacing:

B baud-spaced;
F fractionally spaced.

2) Global convergence criteria dissatisfaction:

P perfect; no noise, sufficient length, adequate
disparity/invertibility, and zero-mean, white,
circular sub-Gaussian source;

N noise present;
L equalizer length inadequate;
D disparity/invertibility lost or threatened;
S source shaped or correlated.

3) Gradient descent algorithm behavior:

E excess error (due to nonvanishing step-size);
R rate of convergence;
T topology of cost surface;
I initialization strategy.

The remainder of this section is organized by the cate
gorization above. Each of the 11 labels is discussed using
selected citations drawn from Appendix III.

Because the focus of this paper is the CM criterion in a
blind linear equalizer application, we have not considered
work that

1) principally deals with algorithm modifications (e.g.,
normalized, least-squares, Newton-based, block, an
chored, or signed CMA) that may alter the (effective)
cost function surface shape;

2) infers behavior principally from simulation studies
with no connection made to the CM cost function;

3) principally addresses applications other than linear
equalization (e.g., beamforrning, source separation,
interference cancellation, channel identification, de
polarization, or decision-feedback equalization).

Though some of our citations do involve the categories
above, we have chosen to include them because they
contain a substantial amount of directly relevant material
as well.

II Initializing CMA at the origin is unwise due to the zero-valued
CM-cost gradient there.

in
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Equation (24) is written in terms of the (fractionally sam
pled) regressor vector at time n

B. Gradient Descent Algorithm Behavior Theory

The algorithm that performs a stochastic gradient descent
of J CM is often referred to as CMA

These global convergence-inducing conditions do not
include restriction to a constant modulus source, which was
included among the ideal zero-cost conditions of Section 11
D.

The first global convergence proofs for fractionally
spaced CMA which do not simply rely on the extension of
the baud-spaced arguments in [31] appear in [32].

(25)_ [ odd odd even even ] t
r n - r n ,"',rn-(N-l),rn ,"',rn-(N-l) .

the equalizer parameter vector fn at time index n, the
equalizer output Yn, a step-size {t, and the squared source
modulus I (also referred to as the dispersion constant).

The study of dynamic systems, such as CMA, is often
divided into transient and steady-state stages. Convergence
rate is the dominant transient performance descriptor in
classical LMS theory. MMSE and excess MSE (and their
dimensionless ratio, misadjustment = EMSElMMSE) are
the dominant steady-state performance descriptors. There
fore, we consider their CM counterparts here.

Though initialization is not a major concern for the
unimodal cost functions of MSE-rninimizing equalizers
(with preselected delay and phase), it is an unavoidable
issue for CM-minimizing equalizers due to the multi
modal topology of their associated cost surface. Though
initialization strategies exist, none have been proven 100%
successful in practice.

1) Convergence Rate: For trained LMS, the convergence
rate (or geometric decay factor) of the sum-squared param- .
eter error (and squared recovery error) is approximately
bounded above and below by one minus twice the product
of the step-size and the smallest and largest eigenvalues,
respectively, of the received-signal's autocovariance matrix
(i.e., 1 - 2{tAm in > I/T > 1 - 2{tAmax ). This arises
because the underlying quadratic cost function has the
same Hessian, or curvature, across its entire surface. In
contrast, the multimodal CM cost function has a Hessian
that varies across its surface. Early convergence rate studies
addressed this variation in convergence rate across the CM
cost surface by focusing on convergence rate descriptors in
various regions, such as far from minima and near minima
[34].

Referring to Fig. 9, initialization near [fo, fll = [2.5, 0]
will lead to a small-stepsize gradient-descent trajectory
that passes through the neighborhood of a saddle point.
An example displaying multiple temporary saddle-captures
appears in [35]. We believe this saddle capture phenomenon
to be the source of the folklore that considers CMA to be
slowly converging.

We do not provide a synopsis of each citation in the
bibliography. Rather, we propose the abstracts of each
paper as a source for synopses and provide a postscript
bibliography that includes abstracts at http://backhoe.ee.
cornell.eduIBERG/bib/CM_bib.ps.

A. Equalizer Tap Spacing

Practically speaking, the equalizer tap spacing refers
to the rate at which the received signal is sampled and
processed by the equalizer. In creating a discrete linear
system model, the tap spacing determines the delay time
of the equalizer difference equation. Using T to denote the
source symbol interval, baud- or T -spaced FIR equalizers
use a unit delay of T seconds in their tapped delay line.
Fractionally spaced equalizers use a tap spacing less than
T. The most common fractional tap spacing is T /2 s. In
the bibliography in Section V, approximately two-thirds
of the citations cover baud-spaced equalization, while the
remaining one-third cover fractionally spaced equalization.

I) Baud-Spaced Equalization: The pioneering paper in
troducing the CM criterion for a complex-valued source
[29] considers baud-spaced equalization only.

Conditions assuring global convergence ofa baud-spaced
equalizer updated via CMA are: i) no channel noise, ii)
infinite impulse response equalizer, iii) no nulls in channel
frequency response (i.e., no FIR channel zeros on the unit
circle), and ivY a zero-mean, independent (and circularly
symmetric if complex-valued) finite-alphabet source with
sub-Gaussian kurtosis.

The first proof of global convergence for CMA in adapt
ing a baud-spaced equalizer relied on a doubly infinite
equalizer parameterization which allowed any combined
channel-equalizer impulse response [31]. This allows con
vergence study in the combined channel-equalizer space,
which has analytical advantages.

2) Fractionally Spaced Equalization: Original motiva
tions for the use of fractional rather than baud spacing
included: insensitivity to sampling phase; ability to
function as a matched filter; ability to compensate
for severe band-edge delay distortion; and reduced
noise enhancement [5]. Fractionally spaced equalizers
have nearly dominated practice since the 1980's [28].
One feature of fractionally spaced equalizers-virtually
unnoticed until the 1990's-was the possibility that under
ideal conditions a fractionally spaced equalizer of finite
time-span could perfectly equalize an FIR channel [1]. As
noted in [21], this suggests the same connection of equalizer
parameters to the combined channel-equalizer parameters
exploited in [31] and therefore confirms the potential for
global convergence of a eM-minimizing fractionally spaced
equalizer.

Conditions assuring global convergence ofaT/2-spaced
FSE updated each baud interval via CMA are: i) no channel
noise, ii) equalizer time span matching or exceeding that
of the FIR channel, iii) no reflected zeros in the T /2
sampled FIR channel transferfunction, and iv) a zero-mean,
independent (and circularly symmetric if complex-valued)
finite-alphabet source with sub-Gaussian kurtosis.
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Fig. 17. (aHc) CMA's achieved system delay 'as a function of
double-spike location for an equalizer with length 16, 32, 64,
respectively. (dHO CMA's asymptotic MSE performance (solid)
compared to same-delay MMSE performance (dashed) for an
equalizer with length 16, 32, 64, respectively.

environment, one might even consider initializing the FSE
with an impulse response matching the pulse-shaping filter
itself, as (in this mild case) this response is close to
the expected steady-state equalizer solution (assuming that
the FSE is used to accomplish matched filtering at the
receiver).

All of the initialization techniques above still require a
selection of delay, i.e., spike positioning within the equal
izer time span. This delay choice is intimately connected
to the delay-choice in trained-LMS equalization in the
following way: CMA tends to converge to minima with
the same group delay as its initialization. Fig. 17 provides
evidence for this claim using double-spike initializations of
T /2-spaced CMA on the SPIB microwave channel shown
in Fig. 1 under 50 dB SNR and a QPSK source. Note
the (affine) linear correspondence between double-spike
position and asymptotically achieved system delay. Another
interesting characteristic of Fig. 17, seen after comparing
subplots Fig. 17(d)-(f) to Fig. 6, is its suggestion that the
set of system delays reachable by CMA are best in an
MMSE sense. We offer these last 'two statements as educated
conjectures, as no theoretical proofs yet exist to verify
them.

The aforementioned relationship between initialization
and channel group delays suggests that prior information
about the channel may aid in selection of initialization delay
choice. Appendix III notes the existence of other more
complicated off-line initialization schemes that leverage
such notions.

4) Surface Topology: In Figs. 8 and 14, the "molar"
shape of the CM cost surface in two-tap real-valued
equalizer space is the same one used in Section II-C to
aid in an understanding of CMA's transient and asymptotic
performance, as well as to motivate the importance of

A lower bound on the initialization-independent conver
gence rate is impossible with the multimodal CM surface
due to potential of indefinite-term capture by saddle points.

In the neighborhood of a local minimum, the curvature
of CMA's cost surface can be directly related to that
of trained-LMS [36]. Thus, the LMS convergence rate
expression can be used in a traditional manner (e.g., [23])
to provide limits on the channel tracking12 capabilities of
CMA.

2) Excess Cost at Convergence: In realistic situations, it
is impossible to zero the update of a nonvanishing~stepsize

stochastic gradient descent algorithm, even at the optimum
solution. With trained LMS or CMA, this undying pertur
bation may be a result of channel noise or residual lSI.
With CMA, the nonzero update may also be the result of
a non-CM source. The effect of a nonvanishing equalizer
update is an asymptotic MSE level higher than that attained
by the optimum fixed equalizer. This is directly related to
the lifting effect that a non-CM source has on the CM cost
surface, which is evident in Fig. 16.

In addition to the factors determining the excess MSE
of trained LMS (i.e., stepsize, minimum achievable cost,
equalizer length, and received signal power) CMA also has
a term dependent on the source kurtosis.

Excess MSE of fixed (small) step-size CMA due to a
non-CM source is analyzed in [37].

Figs. 8 and 16 show the effect of changing the source
from constant to nonconstant modulus while simultaneously
satisfying all of the global convergence conditions. Though
the CM minima rise in height, they remain in the same
locations in the equalizer parameter plane. As long as
the source is kept sub-Gaussian, a (pure) gradient descent
algorithm would still be able to asymptotically achieve
perfect symbol recovery.

3) Initialization: As noted in the examples of Section 11
C and illustrated in Figs. 11 and 15, the presence of noise or
channel undermodeling causes some CM minima to achieve
better performance than others.

Under violation ofthe conditions ensuring global conver
gence, choice ofinitialization determines asymptotic perfor
mance.

Two initialization strategies are common in the literature
and in practice: spike based or matched filter. The single
spike initialization promoted in [29] for baud-spaced CMA
is characterized by one nonzero equalizer tap, usually
located somewhere in the central portion of the equalizer
tapped-delay line. For T /2-spaced CMA, a suitable exten
sion of the single-spike idea might be a "double-spike"
initialization, whereby two adjacent taps are initialized
nonzero. In the frequency domain, double-spike initializa
tion has a lowpass characteristic, a property also shared
by the transmitter's pulse-shaping filter. In a mild-lSI

12In many practical implementations, such as those with low ambient
noise levels, CMA lowers the symbol error rate to a level suitable for
decision-directed LMS (DD-LMS) to take over. Due to its lower excess
error, DD-LMS is preferred for tracking the slow channel variations. In
low-SNR situations, however, such as those that may arise with a coded
system, the tracking ability of CMA might prove important due to the
potential infeasibility of DD-LMS.
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initialization. Section II-C also described how deformation
of this molar shape occurs with violation of the various
ideal zero-cost conditions, and it used this surface-centric
view to predict the pertinent effects of these violations.

The three-dimensional "molar" shape typical of the real
valued two-tap equalizer CM cost surface offers a compact
visualization of virtually all of the major features of CMA
behavior theory, applicable even to longer equalizers.

Surface characterization via gradient and Hessian formu
las is provided in [38] for baud-spaced equalizers. Refer
ence [39] offers a more developed topological study of the
fractionally spaced CM criterion.

C. Violation of Conditions Ensuring Global Convergence

1) Perfect-All Conditions Satisfied: While Sections IlI
Al and 1lI-A2 listed conditions ensuring the global conver
gence of CMA, their violation is unavoidable in practice.

There exists a set of conditions under which an ar
bitrarily initialized gradient-descent minimization of the
CM criterion results in perfect symbol recovery. These
"global convergence" inducing conditions, however, are
unconditionally violated-if only modestly-in practice.

2) Channel Noise Present: CM-based blind equalization
typically remains successful in common noise environments
(i.e., 17; > 17;' > 0). To recall the cost surface deformations
due to noise, compare Figs. 9-11.

When the pr(?sence of (modest) channel noise is the only
violation ofthe global convergence conditions, the locations
of global CM minima shift toward the origin in equalizer
parameter space and the minimum achievable CM cost is
increased.

This behavior is strikingly similar to the behavior of the
MSE criterion in the presence of channel noise. In fact,
under modest amounts of noise, the CM minima remain
near the MSE minima [33], [40].

At extremely high noise levels (i.e., 17;' > 17;), the two
criteria differ in the following manner: the MSE minima
continue to move toward the origin, while the CM minima
remain within an annulus outside the origin. This behavior
is attributed to the so-called "CMA power constraint" [40].

We have also observed the disappearance of local min
ima under modest-to-high noise 'levels [41], especially for
channels without much disparity (see Fig. 13).

3) Insufficient Equalizer Length: In order to completely
cancel the lSI induced by an arbitrary FIR channel, one
requires an IIR baud-spaced equalizer or a sufficiently

long FIR fractionally spaced equalizer. In the presence
of channel noise, the MSE-optimal equalizer makes a
compromise between lSI cancellation and noise gain, and
the resulting equalizer impulse response is no longer finite
length, even for fractionally spaced equalizers [5].

In the presence of noise, the (baud- and fractionally
spaced) MMSE equalizers have an infinite impulse response,
implying that the length of an FIR equalizer should be
chosen to capture "enough" of the desired response.

Studies on the effect of violations in the equalizer length
condition include [42] in a baud-spaced context, and [43],
[44] in a fractionally spaced context. The latter provide

1940

evidence of CMA robustness to modest channel undermod
eling and include approximate bounds on performance.

As hardware advances permit-increased baud-rate, phys
ical channel delay-spreads remain unchanged, and the rela
tive length of the channel impulse response grows propor
tionally. To combat lSI, there is a corresponding need to
increase equalizer length. Therefore, the desire for higher
communication rates will always stress the equalization
task. This is a primary justification for the continued
development and study of truly simple adaptive equalization
algorithms like LMS and CMA.

4) Disparity/Invertibility Lost: As discussed earlier, the
set of zero-forcing equalizer design equations becomes
poorly conditioned in the presence of deep spectral nulls for
baud-spaced equalizers, or in the presence of nearly com
mon subchannel roots for fractionally spaced equalizers.
Poor conditioning implies an increased parameter sensitiv
ity to noise and other violations of the global convergence
conditions. Fortunately, this parameter sensitivity does not
imply a performance sensitivity. In other words, global
CMA minima remain robust under a loss of disparity. We
note that the same is true for the delay-optimal MMSE
solutions.

A near-loss of disparity (for FSE's) or invertibility (for
BSE's) dramatically increases the sensitivity of suboptimal
CM (and MSE) minima to other violations in the global
convergence conditions. However, global CM (and MSE)
minima remain robust under these conditions.

The behavior of fractionally spaced CM (and MSE)
minima under loss of disparity is explained through the
following design procedure. For simplicity, let us assume
the absence of noise. 1) Factor the common root(s) out of
the subchannels in Fig. 5 and form a new system composed
of the common root(s) component and what remains of
the multichannel component, connected in series. 2) De
sign the subequalizers so that the remaining multichannel
component approximates the inverse of the common root(s)
component. At this point, the cascaded system should
approximate a pure delay. This procedure closely describes
the construction of the MMSE or CM-optimal equalizers
under a loss of disparity [33]. We describe this idea more
formally in Appendix I-C.

There are a number of reasons that we expect the
presence of nearly conuiJ.on subchannel roots, e.g., nearly
reflected13 T /2-spaced roots, in realistic situations. Looking
at Fig. 18, which portrays the roots of the length 300 T /2-

sampled SPIB channel whose impulse response appears in
Fig. I and whose response we consider to be "typical,"
one notices the apparent plethora of nearly reflected roots.
Similarly, one might realize that a long FIR approximation
to a pole l4 in the physical channel would also generate
nearly reflected roots. These reasons suggest the likelihood

13 Common subchannel roots have been shown to be identical to T /2
spaced channel roots reflected across the origin [25].

14 A degree-N polynomial forming a close approximation to a single
pole can be constructed using N roots 011 a ring in the complex plane
with a radius equal to the pole magnitude. The roots are spaced at N + 1
equal intervals on the ring with the exception that there exists no root at
the location of the approximated pole,
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Table 2 Normalized Kurtoses for Various Source Distributions

Fig. 18. Roots of T /2 -sampled SPIB terrestrial microwave chan
nel #3.

of nearly common subchannel roots in realistic situations.
See [2] for further discussion on the existence of reflected
roots in physical systems and its negative implications on
second-order-statistics based blind equalization.

5) Shaped or Correlated Source: Source shaping, en
couraged by a potential increase in coding gain (e.g., see
[3]), has the effect of making the source symbol distribution
more Gaussian. As far as our problem is concerned, it has
the practical effect of raising the kurtosis. Increases in
source kurtosis, as long as they remain sub-Gaussian, do
not affect the locations of CM local minima. However,
they are known to flatten the CM cost surface in all
but the radial direction, making CMA's convergence to
the minima slower (and in the limiting Gaussian case,
impossible). In addition, increases in soUrce kurtosis have
been shown to raise the CM surface (see Fig. 16), thus
increasing the excess asymptotic error levels achieved by
nonvanishing-step-size stochastic gradient algorithms.

Recall that non-CM sources also have kurtoses greater
than one. To put source shaping in perspective, Table 2
presents the kurtosis of popular source alphabets along with
the limiting Gaussian values. Note that a shaped source has
the potential for raising the kurtosis far past that of a dense
(uniform) constellation like 1024-QAM.

For shaped sources with near-Gaussian kurtoses, the eM
cost surface is raised and flattened, therefore unsuited to
stochastic gradient descent.

Source correlation results from the use of certain types
of coding (e.g., differential encoding) or under particular
operational circumstances [45], [46]. Moderate amounts of
source correlation may shift the locations of local minima.
Large amounts of correlation may cause additional (false)
minima to appear in the CM cost surface. Recall that
any amount of source correlation violates the CM global
convergence requirements. The most thorough studies on

Table 3 Annotations Used In the Bibliography
and Their Interpretions

IComments

real-valued alphabet kurtosis complex-valued alphabet kurtosis

uniform BPSK 1 uniform M-PSK 1

uniform 4-PAM 1.64 uniform 16-QAM 1.32

uniform 8-PAM 1.762 uniform 64-QAM 1.381

uniform 16-PAM 1.791 uniform 256-QAM 1.395

uniform 32-PAM. 1.798 uniform 1024-QAM 1.399

Gaussian 3 Ga~ian 2

P Perfect Equalization Addresses tbe cue where any pure delay is achievable;

global CODwr«ence

N Noise Addresses the effects of noise

L Length Ad~resses the effects of equalizer length

D Disparity Addresses the effects of channel disparity

S Source Addresses the effects of sources that are

shaped. non·cooStant modulus 01' correlated

F FSE Fractionally-spaced equalization context

B BSE Ba.ud-spaced equalization oontext

I Initialization Discusses initialization procedures for adaptive implementations

E Excess error Discusses sources of excess error in adaptive

implementations due to nonvanishing stepsize

R Convergence Rate Discusses conver&ence rate of adaptive implementations

T Surface 'Ibpology Stu~ies topology of error surface

Symbol IMe&Il~

the effects of shaped' and/or correlated sources appear in
[39] and [46].

As a final note, we point out that the global conver
gence conditions for complex-valued implementations of
the CM criterion specify a circularly symmetric source,
i.e., E{ s~} = O. Studies have shown that violations of
this requirement (e.g., from the use of a real-valued source
with a complex-valued channel and/or equalizer) can result
in the appearance of undesired CM minima [47].

D. Additional Information

These descriptions of the literature categorization have
prepared the reader to utilize the annotated bibliography
in Appendix iII, which provides an in-depth look into the
CM literature. Each entry in the bibliography is annotated
with.boldface letters that indicate the classification of its
content (see Table 3). A postscript file containing the
abstracts of papers in this list is provided available from:
http://backhoe.ee.comell.edu/BERGlbib/CM_bib.ps.

We also recommend The BERGULATOR, a public
domain MATLAB-5 based software environment which
allows for experimentation with the CM criterion and
various implementations of CMA. It can be used, for
example, to generate all contour plots in this paper. The
BERGULATOR was written by P. Schniter of Cornell
University's Blind Equalization Research Group (CU
BERG) and is available from the following web site:
http://backhoe.ee.comell.edu/BERG/.
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We refer to r~ven and r~dd as the "even" and "odd" received
sequences and to f~ven and f::. dd as the "even" and "odd"
subequalizers, respectively.

Defining the even and odd baud-rate channel response
samples

c~ven = c(nT - to) and c~dd = c(nT + ~ - to)

(34)
and channel noise samples w~ven = w(2n(T/2)) and
w~dd = w((2n + 1)(T/2)) (for nonnegative integers n),
we can confirm that they are related to the received subse
quences in a straightforward manner

ApPENDIX I
FRACTIONALLY SPACED SYSTEM MODEL

We denote the combined LTI channel and pulse-shape
impulse response by c(t) and the baseband additive chan
nel noise process by wet). The continuous-time baseband
representation of the waveform seen by the receiver can
then be described by

DC

r(t) = 2:: snc(t - nT - to) + wet) (26)
n=-X)

for symbol sequence {sn}, baud interval T, and arbitrary
time delay to. Samplingl5 the received signal every T/2 s at
the receiver, we denote the sampled received sequence by

r(k~) = f= snc(k~ -nT-to) +W(k~).
n=-CX)

(27)
The output x k of a length 2N FIR FSE with tap spacing"

of T /2 can be written as a T /2-rate convolution with the
sampled received sequence

and

odd ( T)rn = r nT+"2 .

r
even = '""' S c

even + w
even

n L I n-l n

I

rodd = '""' s cOdd + woddn L I n-l n'
I

(33)

(35)

(36)

15 The noise and channel are considered band-limited assuming antialias
filtering is done prior to T /2-spaced sampling at the receiver.

(37)

(39)h = feven * cOdd + fOdd * ceven
n n n n n·

Yn = ~l feven ('""' S cOdd + Odd)L' L I n-t-l W n - t

i=O I

+~l fodd ('""' s ceven + weven)L...J t L.-J l n---:'l.-l n-t
;=0 I

= Sn * (f~ven * c~dd + f:;,dd * c~ven)

+ f~ven * w~dd + f:;,dd * w~ven (38)

These expressions allow us to rewrite the decimated equal
izer output in terms of the baud-spaced symbol sequence.

It is important to note that the arbitrary delay to has
been incorporated into our definitions of the channel re
sponse samples. This implies that the "even" and "odd"
subchannel classifications are merely notational and have
no real physical significance. Furthermore, the inclusion or
arbitrary delay implies that our convention of retaining the
odd-indexed (as opposed to the even-indexed) decimated
equalizer output samples also lacks practical significance.
In this spirit, we drop the "odd" notation on y~dd and
simply refer to the baud-spaced system output samples as
Yn' Here we are seeing evidence for the inherent baud
synchronization capabilities of an FSE (not characteristic
of BSE's).

Substituting the received subsequence expressions (35)
and (36) into (32)

where the "*" indicates convolution. The relationships
between the source, noise, subequalizers, and subchannels
described above appears in the multichannel model of
Fig. 5.

Consider for a moment the noiseless case. The impulse
response hn from transmitted source to baud-spaced equal
izer output follows immediately from consideration of Sn

as the Kronecker delta sequence 6n . Thus, we conclude that

(28)

(30)

(29)

(32)

r~ven = renT)

2N-l ( T T)
~ fir nT - i "2 + "2

'~l (hir((n _ i)T +~)

+hi+lr((n - i)T)). (31)

odd
Yn = X2n+1

N-I

y~dd = L
;=0

The choice of an even number of equalizer taps is chosen
for notational simplicity. Now suppose that only the "odd"
fractionally spaced equalizer output samples are retained in
a decimation by two (i.e., k = 2n + 1 for n = 0, 1, 2, ...).
The decimated equalized output sequence y~dd then be
comes

Note that a similar procedure can be carried out for even
indexed output sampling (i.e., k = 2n and y~ven = X2n). An
illustration of the setup described above appears in Fig. 3.

where

A. Multichannel Model

From (31) we observe that the decimated output y~dd can
be considered the sum of two baud-spaced convolutions
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This impulse response leads directly to a transfer function
H(z-l) with unit delay (z-l) of duration T

H (z -1) = F even (z -1) Codd (z -1 )

+ Fodd (z -1) Ceven (Z-1 ). (40)

be satisfied. For example, if the subchannels share one
root, a common polynomial C(z-l) = go + glz-l can
be factored out of both Ceven (z-l) and Codd(Z-l), leav-
. - 1 - 1 .
mg Ceven(z- ) and Codd(Z- ), respectively. The perfect
equalization relationship would then become

Note that the perfect zero-forcing system H (z) z-b
(with nonnegative integer delay 8), leads to the Bezout
relationship [8]

Z-b =C(z-l) (Feven(Z-l)Codd(Z-l)

+Fodd (z-l) C even (Z-l)) (48)

Z-b = Feven(z-l)Codd(Z-l) + FOdd(Z-l)Ceven(Z-l).
(41)

B. Multirate Model

To show that the multirate model of Fig. 4 also originates
from the fractionally spaced communication system of
Fig. 3, we show that the fractionally spaced equalizer output
{Xk} in (28) can be written in terms of a zero-filled version
of the source sequence {ak}

for k even

for k odd

as depicted in Fig. 4. Rewriting (27) as

(42)

but this is contradicted by the fact that there is
no finite-length polynomial Feven(Z-l )Codd (Z-l) +
FOdd(Z-l)Ceven(z-l) that when multiplied by C(Z-l)
results in the delay operator z-b.

However, Feven(z-l) and Fodd(Z-l) can be chosen so
that (48) is approximated, in which case the following
relationship is satisfied:

Z-bC- 1(z-l) :::::: Fev~n (z-l) C odd (z-l)

+ FOdd(Z-l)Ceven(Z-l). (49)

In other words, the FSE combines with the noncommon
root component of the channel to approximate the (IIR)
inverse of the (T-spaced) common root component.

Note from (39) that only half of the terms in the fractionally
spaced impulse response (47) are directly relevant to the
system output since the fractionally spaced output {:z:d is
later decimated by two.

2N-1 (( T) )
Xk = t; ii ~ alc (k - i - l) "2 - to + Wk-i

(44)

D. On The Independence of Fractionally
Sampled Channel Noise

A typical assumption on the (baseband equivalent) chan
nel noise w( t) is that it is well modeled by a zero
mean, circularly symmetric Gaussian process [10]. In many
situations W (t) is also assumed to have a flat wideband
power spectrum. Does this imply that the fractionally
sampled noise process {Wk} will also be white? Under
these conditions, {wd will only be white when the anti
alias filters prior to T 12-spaced sampling satisfy a rate
2fT Nyquist criterion. In practice, this criterion is satisfied
by anti-alias filters that are power-symmetric about the
frequency liT Hz. If, for example, the filtering prior to
equalization is matched to the pulse shape of the transmitted
signal, then fractionally sampled {Wk} will not be white.

ApPENDIX II
THE CM COST FUNCTION

Below we provide the general formulation of the CM cost
function for a complex i.i.d. zero-mean source and complex
baseband channel in additive white zero-mean noise. We
will assume that each member .of the symbol alphabet
is equiprobable in the source sequence. Furthermore, we
also assume that the receiver sampling clock is frequency
synchronous (a fixed time offset is allowed) with the source
symbol clock. In practice, this is a reasonable assumption
since the symbol clock can often be extracted by computing
the square magnitude of the received signal (commonly
known as envelope detection). Given these assumptions,
we follow the general formulation of the CM cost function
with expressions for the specific cases of PAM, PSK, and
QAM input signals.

(46)

(47)

(45)

we see upon its substitution into (28) that

where the fractionally spaced channel response samples Ck

are defined such that Ck = c(k(TI2) - to).
At this point we can observe that, in the noiseless

case, the fractionally spaced system impulse response hrs

becomes

C. The Subchannel Disparity Condition

The Bezout equation (41) leads directly to the per
fect equalization requirement concerning subchannel roots.
Specifically, for the existence of a (finite-length) zero
forcing equalizer, the subchannel polynomials Ceven (z-l)
and Codd (Z-l) must not share a common root.

The existence of perfectly equalizing sub-equalizer poly
nomials Feven (z-l) and Fodd (Z-l) implies that (41) can
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In addition to the previously introduced notation we will
use the following definitions:

""s = E {I S;1
4
}, the normalized kurtosis of {Sn} (50)

rJ s

, = E{ls;1
4

}, the dispersion constant of {Sn} (51)
rJs

P-l

Ilhll~ = L Ihn l2, the squared f 2-norm of h. (52)
n=O

Note that, = rJ;""s, where rJ; = E{lsnj2}. Following the
presentation of the FS system model in Section I-C and
Appendix I, we can redefine the equalizer output using (4)
and (13). This results in

(53)

The CM cost function is

J CM = E{ (r - IYnI2)2} (54)

= E{IYnn - 2,E{IYnn +,2
= E {!Yn 1

4
} - 2rJ;""sE {IYn 1

2
} + rJ; K,;. (55)

In order to analyze J CM , we will first expand IYnI 2,
using (53). For convenience we will temporarily let An =
hts(n) and Bn = ftw(n), where Yn = An + Bn· Using
the assumptions of mutually independent zero-mean noise
and source sequences, we note that An and Bn are also
independent and zero-mean, i.e.,

E{An} =htE{s(n)} = 0

E{Bn } =ftE{w(n)} = 0

and

With these assumptions, we arrive at

E{IYnI2} = E{IAnI2} + E{An}E{B~}

+ E{A~}E{Bn} + E{IBnI2}

= E{IAnn + E{IBnn. (56)

Expanding IAn l2 and IBnl\ we have that

E{IYnI 2} =rJ;lIhll~ + rJ~lIfll~· (57)

The same approach can be used to examine E {IYn 1
4 } ,

which leads to the following equation:

E{IYnI 4
} =E{IAn I

4
} +E{A~}E{(B~)2}

+ 4E{IAn I
2}E{IBn I

2} (58)

+ E{B~}E{(A~)2} + E{IBn I
4

}. (59)

Due to space limitations, we omit the details of the deriva
tion of E{IYnI 4 } but mention the following properties used
in the derivation.

The second-order terms are relatively easy to com
pute; they involve summations of source (and noise)
terms of the form E{sn-;sn-I}, E{Sn-iS~_I}, or
E{s~_;S~_I}'

1944

- The fourth-order terms are more difficult to compute,
but each of the source (and noise) terms are of the
form E{Sn-iS~_lsn-mS~_j}'

Any of the expectations not involving an even power (two
or four) will vanish because the source and noise are
both zero-mean and white. After a considerable amount of
algebra we arrive at the following expression for E{IYnI4 }.

Noting that E{s~} and E{w;} are independent of n, we
will denote expectations of this form by E { 8 2} and E {w 2

},

respectively

P-l P-l P-l

E{IYnI 4
} = K,srJ; L Ih;1

4 + 2a; L L Ihi l
2

i=O ;=0 m=O, m;ii

P-l P-l
·lh=12 + IE{ s2}12 L L h~(h;f

;=0 j=O,iti

2N-l 2N-l 2N-l
+ K,wa~ L 11il

4
+2a~ L L

;=0 ;=0 ==0, =;ii

2N-l 2N-l
'11i1

2
11m1

2 + IE{ w
2}1 2 I: I: 1l(fj)2

i=O j=O,iti

We define the noise kurtosis K,w analogous to the source
kurtosis",s in (50). Substituting (57) and (60) into (55) we
have the final expansion of the cost function.

P-l P-l P-l

JCM = K,sa; I: Ihi l4 + 2rJ; I: I:
i=O i=O ==0, =;ii

P-l P-l
·lh;l2Ih=12 + IE{s2}12 I: I: h~(h;)2

i=O j=O,iti

2N-l 2N-l 2N-l

+ K,wa~ I: 11il
4 + 2a~ I: I:

i=O i=O m=O, =;i;

2N-l 2N-l
.11;1211=12 + IE{ w2}1 2 I: I: J?(fj)2

;=0 j=o,it;
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P-l P-l

L L

e
e

r
I
I We will now consider how various restrictions on the source

and noise simplify this equation.

A. PAM Source, Real- Valued Channel

For PAM the source symbols Sn are real valued so that
E{jsnj2} = E{s~} = 0-;. Furthermore, if W n , f, and
h are real valued, we have E{lwn I2

} = E{w~} = a~,

Jl = U;*)2 = If;12
, and h; = (hi)2 = Ih;1 2• Thus, we

have that, for a real-valued source and real-valued channel,
(61) reduces to

P-l P-l P-l

JCM IPAM = ""sO-; L h; + 30-; L L
;=0 ;=0 m=O, m#i

2N-l 2N-l 2N-l
+ ,,"wo-~ L ft + 30-~ L L

i=O i=O m=O, m#i

.Jl f;' + o-;o-~lIhl@\fII~ + 40-;a~lIhl@lfll~

+ a;o-~llhll~llfll~

- 20-;,,"s(0-;llhll~ + o-~lIfll~) + 0-;"";.

Noting that

P-l

hrh~ = Ilhll~ - L h;
;=0 m=O, m#; i=O

and summing like terms we arrive at

P-l

JCMlpAM =o-;(""s - 3) L ht + 30-;lIhll~
i=O

2N-l
+ o-~(,,"w - 3) L ft + 30-~lIfll~

i=O

+ 60-;0-~llhll~llfll~

- 20-;,,"s(0-;lIhll~ + a~llfll~) + 0-;"";. (62)

Note that if the noise is Gaussian, ""w = 3 and the third
term in (62) is zero.

1) BPSK Source, Real-Valued Channel: Here we con
sider the subcase of a BPSK source in a real-valued channel
results in further simplifications. For BPSK, ""s = a; = 1,
which implies that (62) reduces to

P-l

JcMIBPSK = - 2I: h; + 311hll~ + o-~(,,"w - 3)
i=O

2N-l
.~ it +3l1~lIflii +6l1~llhll~llfll~

;=0

reduces to

P-l P-l P-l

JCMlr.i. noise = II;s l1; L Ihi l4 + 2l1; L L
i=O ;=0 m=O, m#;

P-l P-l

'lh;12Ihm I2+ IE{s2}12 L L
;=0 i=O, j#i

2N-l 2N-l
. h;(hj)2 + II;wa~ L IJil4 + 20-~ L

;=0 i=O
2N-l
L If;J2lfml2+ 4a;a~lIhll~llfll~

m=O,m#i

For the remaining derivations we will make the assumption
of rotationally invariant noise.

3) PSK Source: For PSK symbols, Sn E {ej2'1rm/2
M

}

and m E {O, 1,"', 2M - I} (where j = .;=1), we note
that a; = E{lsI4

} = ""s = a; = 1. Thus, (64) simplifies to

P-l P-l P-l

JCMlpSK = L Ih;14 + 2 L L Ih;J2lhml2
i=O i=O m=O, m#i

P-l P-l

+ IE{s2}12 L L
i=O j=O,#i

2N-l 2N-l 2N-l
. L Ihl4 + 20-~ L L IJil2 1fml2

i=O i=O m=O, m#i

+ 40-~llhl@lfll~ - 2(llhll~ + o-~lIfll~) + 1.

(65)

4) QAM Source: For 90° rotationally invariant QAM
(Le., for every member qm in the QAM alphabet,
{jqm, -qm, -jq,.,;} are equally likely members of the
alphabet), we have that E{s2} = 0 and (64) reduces to

P-l P-l P-l

JcMIQAM = ""sO-; L Ihi l4 + 217; L L Ihi l2
i=O i=O m=O, m#i

2N-l 2N-l
'lhm l2 + ,,"wa~ L If;l4 + 20-~ L

;=0 i=O

2N-l
L Ifd 2 1fml2 + 40-;a~lIhll~llfll~

- 2(llhll~ + l1~llfll~) + 1. (63) APPENDIX III
eM-MINIMIZING EQUALIZATION LITERATURE

1)

In the absence of noise, (63) is the equation given in [38].
2) Complex-Valued Rotationally Invariant Noise: If we

make the assumption that the (complex) noise is rotationally
invariant, i.e., p(w = pejB ) = p(lwl = p) /21r for all e E
[0, 21rJ, then we have that E{wn} = E{pn}E{ejnB } = 0,
for n = L 2, .. '. Using this assumption the cost function

1) R, A. Axford, Ir., L. B. Milstein, and I. R. Zeidler, "On the
rnisconvergence of CMA blind equalizers in the reception of
PN sequences," in Proc. IEEE Military Commun. Con!, Fort
Monmouth, NI, Oct. 2-5, 1994, pp. 281-286. Categories B,
S, R. .

2) _, "Refined techniques for blind equalization of phase
shift keyed (PSK) and quadrature amplitude modulated QAM
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digital communications signals," Ph.D. dissertation, Univ. of
California, San Diego, 1995. Categories B, S, E.

3) R. A. Axford, Jr., L. B. Milstein, and J. R. Zeidler, "The
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modulus algorithm," IEEE Trans. Signal Processing, vol. 46,
pp. 519-523, Feb. 1998. Categories B, S, R.

4) N. J. Bershad and S. Roy, "Performance of the 2-2 constant
modulus (CM) adaptive algorithm for Rayleigh fading sinu
soids in Gaussian noise," in Proc. IEEE Int. Con! Acoustics,
Speech, Signal Processing, Albuquerque, NM, Apr. 1990, pp.
1675-1678. Categories B, N.
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spaced CMA blind equalizer cost function in the presence of
channel noise," in Proc. IEEE Int. Con! Acoustics, Speech,
Signal Processing, Seattle, WA, May 1998, pp. 3345-3348.
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B, L, T, I.
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